Acknowledgement
This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety, South Korea, a grant from the Nuclear Safety and Security Commission, South Korea (Grant No. 1903001), and a grant from the Nuclear Research & Development Program of the National Research Foundation of Korea, South Korea funded by the Ministry of Science, ICT and Future Planning, South Korea (Grant No. NRF-2019M2D2A1A03056998).
References
- S. Mirshak, W.S. Durant, R.H. Towell, Heat Flux at Burnout, No. DP-355, Du Pont de Nemours (EI) & Co. Savannah River Lab., Augusta, Ga, 1959.
- Y. Sudo, K. Miyata, H. Ikawa, M. Kaminaga, M. Ohkawara, Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel, J. Nucl. Sci. Technol. 22 (8) (1985) 604-618. https://doi.org/10.1080/18811248.1985.9735705
- M. Kaminaga, Y. Sudo, A new CHF correlation scheme proposed for vertical rectangular channels heated from both sides in nuclear research reactors, in: The 1st JSME/ASME Joint International Conference on Nuclear Engineering, 1991.
- Y. Sudo, Study on critical heat flux in rectangular channels heated from one or both sides at pressures ranging from 0.1 to 14 MPa, J. Heat Tran. 118 (3) (1996) 680-688. https://doi.org/10.1115/1.2822686
- M. Kaminaga, K. Yamamoto, Y. Sudo, Improvement of critical heat flux correlation for research reactors using plate-type fuel, J. Nucl. Sci. Technol. 35 (12) (1998) 943-951. https://doi.org/10.1080/18811248.1998.9733966
- M. Kureta, H. Akimoto, Critical heat flux correlation for subcooled boiling flow in narrow channels, Int. J. Heat Mass Tran. 45 (20) (2002) 4107-4115. https://doi.org/10.1016/S0017-9310(02)00129-1
- H.Y. Kim, J.Y. Bak, J.J. Jeong, J.H. Park, B.J. Yun, Investigation of the CHF correlation for a narrow rectangular channel under a downward flow condition, Int. J. Heat Mass Tran. 130 (1) (2019) 60-71. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.073
- M. Kureta, H. Akimoto, Critical heat flux of subcooled flow boiling in narrow rectangular channels, in: Proceedings of the 6th International Conference on Nuclear Engineering, ICONE-7, Tokyo, Japan, 1999, p. 7016.
- F. Tanaka, T. Hibiki, Y. Saito, T. Takeda, K. Mishima, Thermal-hydraulic Design Concept of the Solid-Target System of Spallation Neutron Source, 2001.
- F. Tanaka, T. Hibiki, K. Mishima, Correlation for flow boiling critical heat flux in thin rectangular channels, J. Heat Tran. 131 (12) (2009) 121003. https://doi.org/10.1115/1.3216037
- V.H. Del Valle, An experimental study of critical heat flux in subcooled flow boiling at low pressure including the effect of wall thickness, in: Paper Presented at the ASME·JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, 1983.
- S.K. Moon, W.P. Baek, S.H. Chang, Parametric trends analysis of the critical heat flux based on artificial neural networks, Nucl. Eng. Des. 163 (1-2) (1996) 29-49. https://doi.org/10.1016/0029-5493(95)01178-1
- T.B. Trafalis, O. Oladunni, D.V. Papavassiliou, Two-phase flow regime identification with a multiclassification support vector machine (SVM) model, Ind. Eng. Chem. Res. 44 (12) (2005) 4414-4426. https://doi.org/10.1021/ie048973l
- H. Wei, G.H. Su, S.Z. Qiu, W. Ni, X. Yang, Applications of genetic neural network for prediction of critical heat flux, Int. J. Therm. Sci. 49 (1) (2010) 143-152. https://doi.org/10.1016/j.ijthermalsci.2009.06.007
- J. Cai, Predicting the critical heat flux in concentric-tube open thermosiphon: a method based on support vector machine optimized by chaotic particle swarm optimization algorithm, Heat Mass Tran. 48 (8) (2012) 1425-1435. https://doi.org/10.1007/s00231-012-0991-0
- B.T. Jiang, F.Y. Zhao, Combination of support vector regression and artificial neural networks for prediction of critical heat flux, Int. J. Heat Mass Tran. 62 (2013) 481-494. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.025
- M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system, Phys. Fluids 27 (9) (2015), 092101. https://doi.org/10.1063/1.4930004
- W. Chang, X. Chu, A.F.B.S. Fareed, S. Pandey, J. Luo, B. Weigand, E. Laurien, Heat transfer prediction of supercritical water with artificial neural networks, Appl. Therm. Eng. 131 (2018) 815-824. https://doi.org/10.1016/j.applthermaleng.2017.12.063
- P. Amani, K. Vajravelu, Intelligent modeling of rheological and thermophysical properties of green covalently functionalized graphene nanofluids containing nanoplatelets, Int. J. Heat Mass Tran. 120 (2018) 95-105. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.025
- H.S. Lim, Y.T. Kang, Estimation of finish cooling temperature by artificial neural networks of backpropagation during accelerated control cooling process, Int. J. Heat Mass Tran. 126 (2018) 579-588. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.022
- M.H. Ahmadi, A. Tatar, M.A. Nazari, R. Ghasempour, A.J. Chamkha, W.M. Yan, Applicability of connectionist methods to predict thermal resistance of pulsating heat pipes with ethanol by using neural networks, Int. J. Heat Mass Tran. 126 (2018) 1079-1086. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.085
- G.M. Hobold, A.K. da Silva, Machine learning classification of boiling regimes with low speed, direct and indirect visualization, Int. J. Heat Mass Tran. 125 (2018) 1296-1309. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.156
- H. Wei, S. Zhao, Q. Rong, H. Bao, Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods, Int. J. Heat Mass Tran. 127 (2018) 908-916. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082
- A. Shahsavar, S. Khanmohammadi, A. Karimipour, M. Goodarzi, A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network, Int. J. Heat Mass Tran. 131 (2019) 432-441. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.069
- G.M. Hobold, A.K. da Silva, Automatic detection of the onset of film boiling using convolutional neural networks and Bayesian statistics, Int. J. Heat Mass Tran. 134 (2019) 262-270. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.070
- A. Zendehboudi, R. Saidur, I.M. Mahbubul, S.H. Hosseini, Data-driven methods for estimating the effective thermal conductivity of nanofluids: a comprehensive review, Int. J. Heat Mass Tran. 131 (2019) 1211-1231. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.053
- Y. Li, H. Wang, X. Deng, Image-based reconstruction for a 3D-PFHS heat transfer problem by ReConNN, Int. J. Heat Mass Tran. 134 (2019) 656-667. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.069
- L. Yang, W. Dai, Y. Rao, M.K. Chyu, Optimization of the hole distribution of an effusively cooled surface facing non-uniform incoming temperature using deep learning approaches, Int. J. Heat Mass Tran. 145 (2019) 118749. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118749
- A. Baghban, M. Kahani, M.A. Nazari, M.H. Ahmadi, W.M. Yan, Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils, Int. J. Heat Mass Tran. 128 (2019) 825-835. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.041
- G.M. Hobold, A.K. da Silva, Visualization-based nucleate boiling heat flux quantification using machine learning, Int. J. Heat Mass Tran. 134 (2019) 511-520. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.170
- X. Zhao, K. Shirvan, R.K. Salko, F. Guo, On the prediction of critical heat flux using a physics-informed machine learning-aided framework, Appl. Therm. Eng. 164 (2020) 114540. https://doi.org/10.1016/j.applthermaleng.2019.114540
- Y. Liu, T.N. Dinh, Y. Sato, B. Niceno, Data-driven modeling for boiling heat transfer: using deep neural networks and high-fidelity simulation results, Appl. Therm. Eng. 144 (2018) 305-320. https://doi.org/10.1016/j.applthermaleng.2018.08.041
- M. Ravichandran, M. Bucci, Online, quasi-real-time analysis of highresolution, infrared, boiling heat transfer investigations using artificial neural networks, Appl. Therm. Eng. 163 (2019) 114357. https://doi.org/10.1016/j.applthermaleng.2019.114357
- M. He, Y. Lee, Application of deep belief network for critical heat flux prediction on microstructure surfaces, Nucl. Technol. (2019) 1-17.
- Y. Lv, Y. Duan, W. Kang, Z. Li, F.Y. Wang, Traffic flow prediction with big data: a deep learning approach, IEEE Trans. Intell. Transport. Syst. 16 (2) (2014) 865-873. https://doi.org/10.1109/TITS.2014.2345663
- G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A.W.M. Laak, B. Ginneken, C.I. S anchez, A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60-88. https://doi.org/10.1016/j.media.2017.07.005
- K. Lan, D.T. Wang, S. Fong, L.S. Liu, K.K. Wong, N. Dey, A survey of data mining and deep learning in bioinformatics, J. Med. Syst. 42 (8) (2018) 139. https://doi.org/10.1007/s10916-018-1003-9
- A. Kamilaris, F.X. Prenafeta-Boldu, Deep learning in agriculture: a survey, Comput. Electron. Agric. 147 (2018) 70-90. https://doi.org/10.1016/j.compag.2018.02.016
- L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikainen, Deep learning for generic object detection: a survey, Int. J. Comput. Vis. 128 (2) (2020) 261-318. https://doi.org/10.1007/s11263-019-01247-4
- K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv Preprint arXiv:1409, 2014, p. 1556.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9.
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
- J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141.
- T. Shimobaba, T. Kakue, T. Ito, Convolutional neural network-based regression for depth prediction in digital holography, in: IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, QLD, 2018, pp. 1323-1326.
- J. Du, Y. Xu, Hierarchical deep neural network for multivariate regression, Pattern Recogn. 63 (2017) 149-157. https://doi.org/10.1016/j.patcog.2016.10.003
- A. Ameri, M.A. Akhaee, E. Scheme, K. Englehart, Regression convolutional neural network for improved simultaneous EMG control, J. Neural. Eng. 16 (2019), 036015. https://doi.org/10.1088/1741-2552/ab0e2e
- F. Khademi, S.M. Jamal, N. Deshpande, S. Londhe, Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression, International Journal of Sustainable Built Environment 5 (2016) 355-369. https://doi.org/10.1016/j.ijsbe.2016.09.003
- S. Kim, P.Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Ceperic, M. Soljacic, Integration of neural network-based symbolic regression in deep learning for scientific discovery, in: IEEE Transactions on Neural Networks and Learning Systems, 2020.
- H. Tayara, K.G. Soo, K.T. Chong, Vehicle detection and counting in highresolution aerial images using convolutional regression neural network, IEEE Access 6 (2018) 2220-2230. https://doi.org/10.1109/ACCESS.2017.2782260
- G. Sateesh Babu, P. Zhao, X.L. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life, Database Systems for Advanced Applications (2016) 214-228.
- A. Komeilibirjandi, A.H. Raffiee, A. Maleki, M. Alhuyi Nazari, M. Safdari Shadloo, Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network, J. Therm. Anal. Calorim. 139 (4) (2020) 2679-2689. https://doi.org/10.1007/s10973-019-08838-w
- G.E. Hinton, Deep belief networks, Scholarpedia 4 (5) (2009) 5497. https://doi.org/10.4249/scholarpedia.5947
- G.E. Hinton, P. Dayan, B.J. Frey, R.M. Neal, The "wake-sleep" algorithm for unsupervised neural networks, Science 268 (5214) (1995) 1158-1161. https://doi.org/10.1126/science.7761831
- G.E. Hinton, Training products of experts by minimizing contrastive divergence, Neural Comput. 14 (8) (2002) 1771-1800. https://doi.org/10.1162/089976602760128018
- G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18 (7) (2006) 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Y. Liu, N.T. Dinh, R.C. Smith, X. Sun, Uncertainty quantification of two-phase flow and boiling heat transfer simulations through a data-driven modular Bayesian approach, Int. J. Heat Mass Tran. 138 (2019) 1096-1116. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.075
- R. Salakhutdinov, A. Mnih, G.E. Hinton, Restricted Boltzmann machines for collaborative filtering, in: Proceedings of the 24th International Conference on Machine Learning, 2007.
- R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann 2 (12) (1995) 1137-1143.
- S. Arlot, A. Celisse, A survey of cross-validation procedures for model selection, Stat. Surv. 4 (2010) 40-79. https://doi.org/10.1214/09-SS054
- J. Larsen, L.K. Hansen, C. Svarer, M. Ohlsson, Design and regularization of neural networks: the optimal use of a validation set, in Neural Networks for Signal Processing VI, in: Proceedings of the 1996 IEEE Signal Processing Society Workshop, IEEE., 1996, pp. 62-71.
- A. Ng, Machine Learning Yearning: Technical Strategy for Ai Engineers in the Era of Deep Learning, 2019, pp. 25-26. https://www.mlyearning.org.
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Science & Business Media, 2009, pp. 219-260.
- C. Xia, W. Hu, Z. Guo, Natural convective boiling in vertical rectangular narrow channels, Exp. Therm. Fluid Sci. 12 (3) (1996) 313-324. https://doi.org/10.1016/0894-1777(95)00083-6
- Y. Kim, K. Suh, One-dimensional critical heat flux concerning surface orientation and gap size effects, Nucl. Eng. Des. 226 (3) (2003) 277-292. https://doi.org/10.1016/j.nucengdes.2003.07.003
- F.W. Staub, The void fraction in subcooled boiling-prediction of vapour volumetric fraction, J. Heat Tran. 90 (1968) 151-157. https://doi.org/10.1115/1.3597446
- F. Tachibana, M. Akiyama, H. Kawamura, Non-hydrodynamic aspects of pool boiling burnout, J. Nucl. Sci. Technol. 4 (3) (1967) 121-130. https://doi.org/10.1080/18811248.1967.9732708
- G. Guglielmini, E. Nannei, On the effect of heating wall thickness on pool boiling burnout, Int. J. Heat Mass Tran. 19 (9) (1976) 1073-1075. https://doi.org/10.1016/0017-9310(76)90191-5
Cited by
- High-resolution prediction of quenching behavior using machine learning based on optical fiber temperature measurement vol.184, 2021, https://doi.org/10.1016/j.ijheatmasstransfer.2021.122338