• Title/Summary/Keyword: supercritical 2

Search Result 147, Processing Time 0.027 seconds

PREDICTION OF A HEAT TRANSFER TO CO2 FLOWING IN AN UPWARD PATH AT A SUPERCRITICAL PRESSURE

  • Cho, Bong-Hyun;Kim, Young-In;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.907-920
    • /
    • 2009
  • This study was performed to evaluate the prediction capability of a commercial CFD code and to investigate the effects of different geometries such as a 4.4 mm tube and an 8/10 mm annular channel on the detailed flow structures. A numerical simulation was performed for the conditions, at which the experimental data was produced by the test facility SPHINX. A 2-dimensional axisymmetric steady flow was assumed for computational simplicity. The RNG $\kappa-\varepsilon$ turbulence model (RNG) with an enhanced wall treatment option, SST $\kappa-\omega$ (SST) and low Reynolds Abid turbulence model (ABD) were employed and the numerical predictions were compared with the experimental data generated from the experiment. The effects of the geometry on heat transfer were investigated. The flow and temperature fields were also examined in order to investigate the mechanism of heat transfer near the wall. The local heat transfer coefficient predicted by the RNG model is very close to the measurement result for the tube. In contrast, the local heat transfer coefficient predicted by the SST and ABD models is closer to the measurement for the annular channel.

Measurement of Antioxidant Activities and Phenolic and Flavonoid Contents of the Brown Seaweed Sargassum horneri: Comparison of Supercritical CO2 and Various Solvent Extractions

  • Yin, Shipeng;Woo, Hee-Chul;Choi, Jae-Hyung;Park, Yong-Beom;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • Seaweed Sargassum horneri extracts were obtained using supercritical carbon dioxide ($SC-CO_2$) and different solvents. $SC-CO_2$ was kept at a temperature of $45^{\circ}C$ and pressure of 250 bar. The flow rate of $CO_2$ (27 g/min) was constant during the entire 2-h extraction period, and ethanol was used as a cosolvent. Six different solvents [acetone, hexane, methanol, ethanol, acetone mix methanol (7:3), and hexane mix ethanol (9:1)] were used for extraction and agitated by magnetic stirring (250 rpm) in the dark at $25^{\circ}C$ for 20 h; the ratio of material to solvent was 1:10 (w/v). Antioxidant properties of S. horneri extracted using $SC-CO_2$ with ethanol and different solvents have shown good activity. The highest activity belongs to $SC-CO_2$ with ethanol extracted oil, showing DPPH, ABTS, total phenolic content, and total flavonoid levels of $68.38{\pm}1.21%$, $83.51{\pm}1.25%$, $0.64{\pm}0.02mg/g$, and $5.57{\pm}0.05mg/g$, respectively. The S. horneri extracts showed a significant correlation between the antioxidant activity and phenolic content. Based on these results, the $SC-CO_2$ extract (ethanol) of the seaweed extract from brown seaweed may be a valuable antioxidant source.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.

Heat Transfer Characteristics of CO2 at Supercritical Pressure in a Vertical Circular Tube (수직원형관에서 초임계압 CO2의 열전달 특성)

  • Yoo, Tae-Ho;Bae, Yoon-Yong;Kim, Hwan-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • At supercritical pressure, the physical properties of fluid change substantially and the heat transfer at a temperature similar to the critical or pseudo-critical temperature improves considerably; however, the heat transfer may deteriorate due to a sudden increase in the wall temperature at a certain condition of a mass and heat flux. In this study, the heat transfer rates in $CO_2$ flowing vertically upward and downward in a circular tube with a diameter of 4.57 mm under various conditions were calculated by measuring the temperature of the outer wall of the tube. The published heat transfer correlations were analyzed by comparing their prediction values with 7,250 experimental data. By introducing a buoyancy parameter, a heat transfer correlation, which could be applied only to a normal heat transfer regime, was extended such that it can be applied to regime of heat transfer deterioration. The published criteria for heat transfer deterioration were evaluated against the conditions obtained from the experiment in this study.

Prediction of partial molar volumes of solutes in supercritical CO2 using the Peng-Robinson equation of state with various mixing rules and Kirkwood-Buff solution theory (3차 상태방정식과 여러 혼합법칙 및 Kirkwood-Buff용액이론을 이용한 초임계유체내에서의 용질의 무한희석 부분몰부피의 계산)

  • Jeon, Young-Pyo;Park, Jong-Seon;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.253-260
    • /
    • 1999
  • Two thermodynamic models were used to predict the partial molar volumes of solutes in supercritical carbon dioxide at infinite dilution: (1) the Peng-Robinson equation of state with various mixing rules including those based on $EOS/G^E$ (2) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) method. The Kirkwood-Buff fluctuation integral method, in which an equation of state for pure component and molecular parameters are required, produced better results especially near the critical point than the Peng-Robinson equation of state with the several mixing rules based an $EOS/G^E$. When the $EOS/G^E$ mixing rules were used, poorer results were obtained compared with the classical mixing rule and Kirkwood-Buff model.

  • PDF

The Extraction of Metal Contaminants using Supercritical CO2 (초임계이산화탄소를 이용한 방사성 금속이온 추출)

  • Ju, Minsu;Kim, Jung-Hoon;Kang, Se-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.660-667
    • /
    • 2016
  • Conventional decontamination methods utilize water-based systems, which generate high amounts of secondary wastes. Herein, we describe an environmentally benign decontamination method using liquid and supercritical $CO_2$. The use of $CO_2$ as a solvent affords effective waste reduction by its ability to be recycled, thereby leaving be hind only the contaminants upon its evaporation. In this study, a $CO_2$ solution process was assessed using t-salen(t-butylsalen), DC18C6 (dicyclohexano-18Crown6), 8-HQN(8-hydroxyquinoline), NEt4PFOSA(perfluoro-1-octanesulfonic acid tetra-ethyl ammonium salt), and NEt4PFOA(pentadecafluorooctanoic acid ammonium salt) to extract spiked radioactive contaminants(Nb,Zr,Co,Sr) from an inert sample matrix, namely filter paper. With the static extraction method, Sr was extracted with a maximum extraction rate of 97%, and Nb was extracted with a maximum extraction rate of 75%. Additionally, we were also able to extract Co and Zr with maximum extract ion ratesof 73% and 64%, respectively.

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea (남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가)

  • Shin, Seung Yong;Kang, Moohee;Shinn, Young Jae;Cheong, Snons
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).

A Study of Dyeing Properties of Nylon Fabrics under Supercritical CO2 Depending on Dyestuff (2) : by C.I. Disperse Yellow 42, C.I. Disperse Orange 155 (초임계 유체 염색용 염료에 따른 Nylon 섬유의 염색 특성 (2) : C.I. Disperse Yellow 42, C.I. Disperse Orange 155)

  • Choi, Hyunseuk;Kim, Hunmin;Lee, Jungeon;Park, Shin;Kim, Taeyoung
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the dyeing properties of supercritical fluid dyed nylon fabrics were investigated which use two types of dyes for dyeing nylon. For other dyeing conditions were referred to related literature, and dyeing was performed with different dyeing concentrations. Dyeability was confirmed through measurement of washing fastness and color coordinate, and a calibration curve of each dye was drawn up and the absorbance of the residual dye was measured to confirm the amount of residual dye and the dye exhaustion rate at the corresponding concentration. As a result of color difference measurement, the color intensity increased as the concentration increased, but the increase was insignificant at high concentration. This tendency was more obvious in C.I. Disperse Orange 155 than in C.I. Disperse Yellow 42. The dye absorption rate also decreases as the concentration increases, but at 0.85% o.w.f concentration, C.I. Disperse Yellow 42 was 97.29% and C.I. Disperse Orange 155 was 93.77%. For both dyes, the wash fastness dropped by 0.5 to 1 class from the sample that was dyed at a concentration of 0.5% o.w.f in the wash fastness test.

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

Preparation of Polypropylene Grafted Polystyrene Sulfonic Acid Membranes for DMFCs in Supercritical CO2 (초임계 이산화탄소 함침을 이용한 연료전지용 폴리스타이렌/폴리프로필렌 복합막의 제조)

  • Byun, Jungyeon;Sauk, Junho;Synn, Wookyun;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2005
  • The composite membranes were made by grafting using supercritical carbon dioxide (scCO2) impregnation and polymerization procedures. The membranes were synthesized by changing amount of monomer. The polypropylene grafted polystyrene sulfonic acid (PP-g-pssa) membranes were characterized with various methods. The morphology and structure of PP-g-pssa membranes were analyzed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). As amount of monomer was increased, ion conductivity, cell performance was increased and methanol permeability was decreased. However PP-g-pssa membranes with 1.5g monomer and over had similar values of methanol permeability, ion conductivity and cell performance.

  • PDF