DOI QR코드

DOI QR Code

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition

이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산

  • Kang, Hyunmin (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Baek, Kyoungbae (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Park, Jinyoung (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 강현민 (부경대학교 지구환경과학과) ;
  • 백경배 (부경대학교 지구환경과학과) ;
  • 왕수균 (부경대학교 에너지자원공학과) ;
  • 박진영 (한국지질자원연구원 석유해저연구본부) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2012.09.05
  • Accepted : 2012.11.24
  • Published : 2012.12.28

Abstract

Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

국내 육상 이산화탄소 지중저장 후보지 중 하나로 거론되고 있는 경상분지 사암에 대하여 초임계$CO_2$ 주입에 의한 사암의 용해반응을 규명하는 실내 실험을 실시하였다. 초임계$CO_2$로 존재하는 지중저장 온도/압력조건(100 bar와 $50^{\circ}C$)을 재현한 스테인레스 셀(용량 110 ml) 내부에 지하수를 주입한 후, 공극률이 다른 3 종류의 경상분지 사암 시료에 대하여 슬랩으로 제작하여 표면을 폴리싱한 후 고압셀 하부에 고정시켜 지하수에 잠기게 하였으며, 초임계$CO_2$를 주입한 후 60 일 동안 지하수 용존 이온 농도 변화, 질량 변화, 광물의 평균 표면 거칠기 변화를 측정하였다. 사암의 물성 변화 실험에서는 채취한 3 종류의 경상분지 사암들을 원통형 코어 형태로 가공하여 대형 고온고압탱크(2 liter 용량)에 고정시켜 30 일 동안 반응 시킨 후 공극률, 건조밀도, 탄성파 속도, 일축압축강도 등을 측정하여 용해반응에 의한 사암의 물성변화를 규명하였다. 반응 시간에 따른 사암 코어의 무게를 측정하여 질량 변화에 따른 1차 용해반응 상수값($k_d$)을 계산하였으며, 이 용해상수를 이용하여 단위면적($cm^2$) 당 1 g의 사암시료가 완전히 용해되는데 걸리는 용해시간을 계산하였다. 사암 슬랩을 이용한 지중저장 조건에서 초임계$CO_2$-사암-지하수 반응 실험 결과 $Ca^{2+}$, $Na^+$의 용해반응이 활발하게 일어나는 것으로 나타나, 이들 함량이 높은 사장석, 방해석 등을 중심으로 사암의 용해반응이 일어남을 알 수 있었으며, 반응 30 일 후 초기 A사암 슬랩 무게의 0.66%가 반응에 의해 용해되었다. 경상분지 사암의 물성 변화 실험 결과, $CO_2$ 반응 30 일 동안 B사암과 C사암의 공극률은 초기 공극률 기준 16.2%와 7.4% 증가하는 반면, 건조밀도, 탄성파 속도 그리고 일축압축강도는 감소하는 경향을 보였으며, 이 결과는 초임계$CO_2$와 반응하여 암석의 용해반응에 의한 물성변화가 짧은 시간 동안 활발히 일어나고 있음을 의미한다. 계산된 용해반응상수값($k_d$)으로부터 B사암과 C사암의 경우 사암에 주입된 $CO_2$에 의하여 단위면적($cm^2$)당 1 g이 용해되는데 각각 평균 1,532 년과 329 년이 걸리는 것으로 나타나, $CO_2$ 지중저장 시 사암의 용해반응이 짧은 시간동안 활발히 일어날 수 있음을 입증하였다.

Keywords

References

  1. Akimoto, K., Kotsubo, H., Asami, T., Li, X., Uno, M., Tomoda, T. and Ohsumi, T. (2004) Evaluation of carbondioxide sequestration in Japan with a mathematical model. Energy, v.29, p.1537-1549. https://doi.org/10.1016/j.energy.2004.03.058
  2. Bachu, S., Gunter, W.D. and Perkins, E.H. (1995) Aquifer disposal of $CO_{2}$-hydrodynamic and mineral trapping. Energy Conversion and Management, v.35, p.269-279.
  3. Bachu, S. (2000) Sequestration of $CO_{2}$ in geological media: criteria and approach for site selection in response of climate change. Energy Conversion and Management, v.41, p.953-970. https://doi.org/10.1016/S0196-8904(99)00149-1
  4. Chang, K.H. (1975) Cretaceous stratigraphy of southeast Korea. J. Geol. Soc. Kor., v.11, p.1-23.
  5. Choi, B.Y., Chae, G.T., Kim, K.H., Koh, Y.K. and Yun, S.T. (2009a) Reactive transport modeling on the behavior of $CO_{2}$ and $SO_{2}$ injected into deep saline aquifer. J. Geol. Soc. Kor., v.45, p.473-484.
  6. Choi, B.Y., Yun, S.T., Mayer, B., Hong, S.Y., Kim, K.H. and Jo, H.Y. (2012) Hydrogeochemical processes in clastic sedimentary rocks, South Korea: A natural analogue study of the role of dedolomitization in geologic carbon storage. Chemical Geol., v.306-307, p. 103-113. https://doi.org/10.1016/j.chemgeo.2012.03.002
  7. Choi, W.W., Kang, H.M., Kim, J.J., Lee, J.Y. and Lee, M.H. (2009b) Study for the Geochemical Reaction of Feldspar with Supercritical $CO_{2}$ in the Brine Aquifer for $CO_{2}$ Sequestration. Econ. Environ. Geol., v.42, n.5, p.403-412.
  8. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc- backarc system in the Korean peninsula: New view. Earth-Science Reviews, v.101, p.225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  9. Egawa, K., Hong, S.K., Lee, H.J., Choi, T.J., Lee, M.K., Kang, J.G., Yoo, K.C., Kim, J.C., Lee, Y.I., Kihm, J.H. and Kim, J.M. (2009) Preliminary evaluation of geological storage capacity of $CO_{2}$ in sandstones of the Sindong Group, Gyeongsang Basin(Cretaceous). J. Geol. Soc. Kor., v.45, p.463-472.
  10. Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W.D. and Perkins, E.H. (2004) Geochemical monitoring of fluid-rock interaction at $CO_{2}$ storage at the Weyburn $CO_{2}$-injection enhanced oil recovery site, Saskatchewan, Canada. Energy, v.29, p.1393-1401. https://doi.org/10.1016/j.energy.2004.03.073
  11. Gunter, W.D., Perkins, E.H. and McCann, T.J. (1993) Aquifer disposal of $CO_{2}$-rich gases, reaction design for added capacity. Energy Conversion and Management, v.34, p.941-948. https://doi.org/10.1016/0196-8904(93)90040-H
  12. Gunter, W.D., Wiwchar, B. and Perkins, E.H. (1997) Aquifer disposal of $CO_{2}$ rich greenhouse gases: extension of the time scale of experiment for $CO_{2}$ sequestering reactions by geochemical modeling. Mineralogy and Petrology, v.59, p.121-140. https://doi.org/10.1007/BF01163065
  13. Hitchen, B. (1996) Aquifer disposal of $CO_{2}$, hydrologic and mineral trapping. Geoscience Publishing Sherwood Park, Alberta, 165p.
  14. IPCC (Intergovernmental Panel on Climate Change), 2005, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge, UK, 208-209.
  15. Kang, H.M. (2012) Study on geochemical changes of rocks with supercritical $CO_{2}$ at the $CO_{2}$ sequestration conditions. Ph.D. Thesis. Pukyong National University, Korea.
  16. Kang, H., Paik, I., Lee, H., Lee, J. and Chun, J. (2010) Soft-sediment deformation structures in cretaceous non-marine deposits of southeastern Gyeongsang basin, Korea: occurrences and origin, Island Arc, v.19, n.4, p.628-646. https://doi.org/10.1111/j.1440-1738.2010.00738.x
  17. Kang, H.M., Park, M.H., Park, S.H., Lee, M.H. and Wang, S.K. (2011) Study for the geochemical reaction of Cafeldspar, amphibole and olivine with supercritical $CO_{2}$and brine on the $CO_{2}$ sequestration condition. Econ. Environ. Geol., v.44, n.2, p.123-133. https://doi.org/10.9719/EEG.2011.44.2.123
  18. Kaszuba J.P., Janecky, D.R. and Snow, M.G. (2003) Carbon dioxide reaction processes in a model brine aquifer at $200^{\circ}C$ and 200bar: Implication for geologic sequestration of carbon. Applied Geochemistry, v.18, n.7, p.1065-1080. https://doi.org/10.1016/S0883-2927(02)00239-1
  19. Ketzer J.M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R. and de Lima, V. (2009) Water-rock-$CO_{2}$ interactions in saline aquifers aimed for $CO_{2}$ storage, Experimental and numerical modeling studies of the Rio Bonito Formation (Perian), southern Brazil. Applied Geochemistry, v.24, p.760-767. https://doi.org/10.1016/j.apgeochem.2009.01.001
  20. Kihm, J.H., Kim, J.M. and Wang, S.K. (2009) Numerical simulation of impacts of mineralogical compositions on efficiency and safety of geologic storage of $CO_{2}$ in deep sandstone aquifers. J. Geol. Soc. Kor., v.45, p.493-516.
  21. Ko, M.J., Kang, H.M., Wang, S.K. and Lee, M.H. (2011) The weathering process of olivine and chlorite reacted with the supercritical $CO_{2}$ on the sequestration condition. J. Geol. Soc. Kor., v.47, p.635-645.
  22. Lee, Y.S., Park, Y.C., Kwon, S.I. and Sung, W.M. (2008) The feasibility study for $CO_{2}$ sequestration into deep saline aquifer at Gorae-V structure in Korea. Journal of Korean Society for Geosystem Engineering, v.45, p.381-393.
  23. Min, K.D. and Chung, C.D. (1985) Gravity survey on the subsurface structure between Waekwan-Pohang in Kyoungsang basin. Jour. Korean Inst. Mining Geol., v.18, n.4, p.321-329.
  24. Min, K.D. and Kim, J.W. (1987) Gravity measurement and interpretation of the subsurface structure of the Kyooungsang basin between Masan-Busan area. Jour. Korean Inst. Mining Geol., v.20, n.3, p.203-209.
  25. Ortoleva, P.J., Dove, P. and Richter, F. (1998) Geochemical perspective on $CO_{2}$ sequestration. U.S. Department of Energy Workshop on 'Terrestrial Sequestration of $CO_{2}$-An assessment of Research Needs', Gaithersburg, MD, May 10-12.
  26. Park, Y.C., Huh, D.G., Yoo, D.G., Hwang, S.H., Lee, H.Y. and Roh, E. (2009) A review of business model for $CO_{2}$ geological storage project in Korea. Journal of Korean Society for Geosystem Engineering, v.45, p.381-393.
  27. Son, H.Y., Kwon, S.I. and Sung, W.M. (2006) Analytical approach of $CO_{2}$ sequestration in a deep confined aquifer. Journal of Korean Society for Geosystem Engineering, v.43, p.275-281.
  28. Yun, S.T., Lee, M.H., Wang, S.K., Park, E.G., Jo, H.Y., and Lee, Y.J. (2011) Study of geological and geochemical factors related to the behaviors and leakage of carbon dioxide in geologic carbon storage: Suggestion of optimal methods for environmental impact assessment of carbon storage. KEITI Final Report 121-102-071, Korea Univ., 358p.
  29. Xu, T., Apps, J.A. and Pruess, K. (2004) Numerical simulation of $CO_{2}$ disposal by mineral trapping in deep aquifers, Applied Geochemistry, v.19, p.917-936. https://doi.org/10.1016/j.apgeochem.2003.11.003

Cited by

  1. Investigation of the Relationship between CO 2 Reservoir Rock Property Change and the Surface Roughness Change Originating from the Supercritical CO 2 -Sandstone-groundwater Geochemical Reaction at CO 2 Sequestration Condition vol.76, 2015, https://doi.org/10.1016/j.egypro.2015.07.896
  2. Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of CO2 leakage vol.39, pp.1, 2017, https://doi.org/10.1007/s10653-016-9813-5
  3. Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2Storage Condition vol.46, pp.3, 2013, https://doi.org/10.9719/EEG.2013.46.3.221
  4. Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2Reaction in High Pressure Condition vol.26, pp.4, 2016, https://doi.org/10.7474/TUS.2016.26.4.293
  5. Physical property changes of sandstones in Korea derived from the supercritical CO2-sandstone‒groundwater geochemical reaction under CO2 sequestration condition vol.19, pp.2, 2015, https://doi.org/10.1007/s12303-014-0036-4
  6. Measurement of the scCO2 Storage Ratio for the CO2 Reservoir Rocks in Korea vol.97, 2016, https://doi.org/10.1016/j.egypro.2016.10.015
  7. The Use of the Surface Roughness Value to Quantify the Extent of Supercritical CO2 Involved Geochemical Reaction at a CO2 Sequestration Site vol.7, pp.6, 2017, https://doi.org/10.3390/app7060572