DOI QR코드

DOI QR Code

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju

충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성

  • You, Byoung-Woon (Geology and Earth Environment Science, Chungnam National University) ;
  • Lee, Gill Jae (Miveral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Koh, Sang Mo (Miveral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 유병운 (충남대학교 지질환경과학과) ;
  • 이길재 (한국지질자원연구원 광물자원본부) ;
  • 고상모 (한국지질자원연구원 광물자원본부)
  • Received : 2012.09.05
  • Accepted : 2012.12.20
  • Published : 2012.12.28

Abstract

The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.

충주 지역은 소위 옥천층군에 해당되는 계명산층이 분포하며, 계명산층내에는 변성화산암 모암과 페그마타이트 모암의 희토류 광체가 배태한다. 변성화산암 모암의 희토류 광체를 구성하는 희토류광물은 갈렴석, 저어콘, 인회석, 스핀이 산출하나 갈렴석이 가장 우세하게 산출한다. 페그마타이트 모암의 희토류 광체를 구성하는 희토류 광물은 퍼구소나이트, 카르나수르타이트, 저어콘, 토륨석이 산출하나 퍼구소나이트가 가장 우세하다. 변성화산암에서 산출하는 갈렴석의 화학식은 (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$로서 TREO 23.89-29.12 wt%, $La_2O_3$ 4.71-9.92 wt%, $Ce_2O_3$ 11.30-14.33 wt%, $Y_2O_3$ 0.11-0.29 wt%, $ThO_2$ 0.12-0.94 wt% 이다. A(2) 사이트 에서 $Ca^{2+}$$REE^{3+}$, M(2) 사이트에서 $Al^{3+}$$Fe^{2+}$의 치환이 일어나는데 이는 갈렴석의 화학조성에 밀접한 관련을 갖는 특징이고, Fe의 함량이 일반 갈렴석보다 높은 Ce 계열의 Ferriallanite에 해당된다. 이는 모암인 계명산층을 주로 구성하는 변성화산암(변성조면암)의 원암이 Fe이 풍부한 함철층이기 때문인 것으로 판단된다. 페그마타이트 모암에서 가장 우세하게 산출하는 퍼구소나이트의 화학조성은 A 사이트에서 Y-REE, Y-Th 치환이 우세하게 일어났으며, B 사이트에서는 Nb-Ta-Ti의 치환이 주로 초래되었으며, 계산된 화학식은 $YNbO_4$ 이다. 또한 $Y_2O_3$$Nb_2O_5$만의 비율로 상관도를 확인 한 결과 연구지역에서 산출되는 퍼구소나이트는 Y과 Nb의 이상적인 비율인 1:1 비율과 달리 1:1.5의 비율을 나타내고 있으며, Nb의 함량이 Y 함량보다 높으며, Y 사이트 즉, A 사이트에서 희토류 원소의 치환이 활발하게 초래되었다. 페그마타이트에서 산출하는 카르나수르타이트는 REE 및 Th를 치환하는 조성은 각각 $Ce_2O_3$ 9.16-22.88 wt%, $La_2O_3$ 2.15-9.16 wt%, $ThO_2$ 0.44-10.8 wt%, 화학조성으로 계산된 구조식은 (Y, REE, Th, K, Na, Ca)$_{1.478}$(Ti, Nb)$_{1.304}$(Mg, Al, Mn, $Fe^{+3})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$이다. 870-860 Ma 인 초기 원생대에 로디니아 대륙의 분열기로서 한반도에서 A-1형 화산활동이 초래되어 철, 희토류원소 및 고장력원소(Nb, Zr, Y 등)가 풍부한 변성화산암으로 주로 구성되는 계명산층을 형성 시켰다면 갈렴석은 모암이 형성될 당시 알카리 화산암에서 정출되었거나 변성작용이 초래된 고생대 말(300-280 Ma, Cho et al., 2002) 광역변성작용에 의해 형성 되었을 가능성이 높다. 희토류를 함유하는 페그마타이트에서 산출하는 저어콘 연대가 190 Ma 인 것은 쥬라기에 충주지역에서 광범위하게 초래된 화강암 정치활동과 관련된 가능성이 크다. 따라서 충주지역 계명산층 내 배태된 희토류 광체는 인접한 지역에 배태되어 있지만 매우 차별적 희토류 광화작용이 초래 되어 희토류광물조성과 광체의 산상이 차별적으로 나타나는 것으로 해석된다.

Keywords

References

  1. Boynton, W.V. (1984) Cosmochemistry of the rare earth elements: meteorite studies. In Hederson P. (ed) Rare earth element geochemistry, Elsevier, Amsterdam, 63-114.
  2. Chang, S.W. and Seo, J.R. (2006) REE mineral resources in Korea. Jour. Miner. Soc. Korea(Mineral and industry), v.19, p.13-29.
  3. Cheong, C.S., Jeong, G.Y., Kim, H., Choi, M.-S., Lee, S.- H. and Cho, M. (2003) Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication. Chem. Geol., v.193, p.81- 92. https://doi.org/10.1016/S0009-2541(02)00227-9
  4. Cho, M.S. and Kim, H.C. (2002) Metamorphic evolution of the Ogcheon metamorphic belt: review of recent studies and remaining problems. Jour. Petrol. Soc. Korea, v.11, p.121-137.
  5. Cluzel, D. (1992) Ordovician bimodal magmatism in the Ogcheon belt (South Korea): an int racontinental riftrelated volcanic activity. Jour. Southeast Asian Earth Sci., v.7, p.195-209. https://doi.org/10.1016/0743-9547(92)90054-F
  6. Chesner, C.A. and Ettlinger. A.D. (1989) Composition of volcanic allanite from the Toba Tuffs, Sumatra, Indonesia. Am. Mineral, v.74, p.750-758.
  7. Dollase, W.S. (1971) Refinement of the crystal structures of epidote, allanite and hancockite. Am. Mineral, v.56, p.447-464.
  8. Henderson, P. (1984) General geochemical properties and abundances of the rare earth elements. In Henderson, P.(ed.) Rare Earth element geochemistry, Elsevier, New york, p.1-32.
  9. Kang, J.H. and Ryoo, C.R. (1997) Igneous activity and geological structure of the Ogcheon metamorphic zone in the Kyemyeongsan area, Chungju, Korea. Jour. Petrol. Soc. Korea, v.6, p.151-165.
  10. Kim, G.S., Park, M.E. and Enjoji, M. (1994) Banded and massive iron mineralization in Chungju mine(I): geology and ore petrography of iron ore deposits. Econ. Environ. Geol., v.27, p.523-535.
  11. Kim, H., Cheong, C.S., Cho, M. and Jeong, G.Y. (2005) Late Paleozoic metamorphism in the Ogcheon metamorphic belt, South Korea: U=Pb stepwise leaching ages of garnet affected by allanite inclusions. Proceed. Annual Joint Conf., Mineral. Soc. Korea and Petrol. Soc. Korea, p.63.
  12. Kim, J.S., Park, M.E. and Kim, G.S. (1998) A geochemical study of the alkali granite in the Kyemyeongsan Formation. Econ. Environ. Geol., v.31, p.349-360.
  13. Kim, J.W., Park, J.K. and Koh, S.M. (1995) Geology and mineral deposits on the Ogcheon Group. Ministry of science and technology. KR-95(B)-4, p.1-52
  14. Kim, K.W. and Lee, H.K. (1965) Geological map of Chungju, Sheet 6724-I, 1:50,000, Geological survey of Korea, 35p.
  15. Koh, S.M. and Chang, H.W. (2011) Geological characteristics of rare earth deposits. The Nation. Aca. of Sci. Rep. of Kor. (Natural Sci. Ser.) v.50, p.37-71.
  16. Koh, S.M. et al. (2011) Exploration and security of domestic rare metal mineralized belt. KETEP 2011 annual report, unpublished.
  17. Koh, S.M. et al. (2012) Exploration and security of domestic rare metal mineralized belt. KETEP 2012 annual report, unpublished.
  18. Koh, S.M., Kim, J.H. and Park, K.H. (2005) Neoproterozoic A-type volcanic activity within the Okcheon metamorphic belt. v.14, p.157-168.
  19. Koo, J.H., Park, Y.S., Lim, M.T., Suh, S.Y. and Choi, J.H. (1986) Regional geophisical and geochemical studies for the exploration of mineral deposits. Korea Institute of Energy and Resources. KR-86-2-74, p.7-27.
  20. Lee, S.H. (1979) Ore petrological studies on the genesis of the metamorphic iron deposits in Southern Korea- with special reference to the Yangyang, Pocheon and Chungju iron deposits-Part I: Geology and petrology. Jour. of the Geol. Soc. of Korea, v.15, p.210-229.
  21. Lumpkin, G.R. and Chakoumakos, B.C. (1988) Chemistry and radiation effects of thorite-group minerals from the harding pegmatite, Taos Country, New Mexico. American Mineralogist, v.73, p.1405-1419.
  22. Kuz'menko, M.V. and Kozhanov. S.I. (1959) The new mineral Karnasurtite. Trudy inst, Mineral., Geokhim. I kristallokhim. redkikh emenentov, v.2, p.95-98.
  23. Na, K.C., Kim, H.S., Lee, D.J. and Lee, S.H. (1982) Comparative studies between Chungju and Seosan Groups. Jour. Korean Inst. Mining Geol.. v.15, p.177- 188.
  24. Oh, M.S. (1989) Allanite mineralization in the Mt. Eorae area. Jour. Korean Inst. Mining Geol., v.22, p.151-166.
  25. Oh, M.S., Seo, J.R., Koo, S.B. and Choi, C.H. (1988) Rare-Earth mineralization in Kyemyungsan Formation of Ogcheon Group, Mt. Eorae area near Choongju City, Middle Korea. Korea institute of energy and resources research report. KR-88-8A, 508p.
  26. Park, G.S. and Kim, G.S. (1998) Geochemistry of uranium and thorium deposits from the Kyemyeongsan pegmatite. Econ. Environ. Geol., v.31, p.365-374.
  27. Park, J.G., Kim, S.W., Oh, C.W. and Kim, H.S. (2003) Geochemical and geochronological studies on metaigneous rocks in the Gyemyeongsan Formation, Northwestern Okcheon metamorphic belt and their tectonic implication. Jour. Petrol. Soc. Korea, v.12, p.155-169.
  28. Park, J.K., Oh, M.S. and Park, S.W. (1993) Rare-Earth mineralization of the Kyemyungsan Formation in the Mt.Eorae area (Choongju), middle Korea(II). Korea institute of geology, mining and materials research report, KR-93-1C-2, 105p.
  29. Park, M.E. and Kim, G.S. (1995) Genesis of the REE ore deposits, Chungju district, Korea: Occurrence features and geochemical characteristics. Econ. Environ. Geol., v.28, p.599-612.
  30. Park, M.E., Kim, G.S. and Choi, I.S. (1996) Geochemical characteristics of allanite from rare metal deposits in the Chungju area, Chungcheongbuk-Do (Province), Korea. Eon. Environ. Geol., v.29, p.545-559.
  31. Park, M.E., Kim, G.S. and Choi, I.S. (1997) Geochemical and petrographical studies on the fergusonite associated with the Nb-Y mineralization related to the alkaline granite, Kyemyeongsan Formation, Korea. Econ. Environ. Geol., v.30, p.395-406.
  32. Park, M.E., Kim, G.S. and Park, K.H. (2005) Genesis of the acidic metavolcanic rocks distributed around the Chungju iron deposit in the Gyemyeongsan Formation. Jour. Petrol. Soc. Korea, v.14, p.169-179.
  33. Petrik, I., Broska, I., Lipka, J. and Siman, P. (1995) Granitoid allanite-(Ce): substitution relations, redox conditions and REE distribution (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol. Carpath., v.46, p.79-94.

Cited by

  1. Geochemical Exploration for Tri Le REE Occurrence in Nghe An Province within Northern Vietnam vol.47, pp.2, 2014, https://doi.org/10.9719/EEG.2014.47.2.147
  2. Geology and constituent rocks of the Chungju-Goesan area in the northwestern part of Ogcheon metamorphic zone, Korea: Considering on the history of igneous activities accompanying formation and evolution processes of the Ogcheon rift basin vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.51
  3. Recurrent rare earth element mineralization in the northwestern Okcheon Metamorphic Belt, Korea: SHRIMP U–Th–Pb geochronology, Nd isotope geochemistry, and tectonic implications vol.71, 2015, https://doi.org/10.1016/j.oregeorev.2015.05.012