DOI QR코드

DOI QR Code

Characteristics of Total Carbon and Total Organic Carbon Using Elemental Analyzer in Hyung-Do Intertidal Zone Sediments

원소분석기를 이용한 형도 퇴적물의 총탄소 및 총유기탄소 특성

  • Lee, Jun-Ho (Department of Environmental Science and Engineering, Hankuk University of Foreign Studies) ;
  • Park, Kap-Song (Department of Environmental Science and Engineering, Hankuk University of Foreign Studies) ;
  • Woo, Han-Jun (Maritime Security Research Center, Korea Institute of Ocean Science & Technology)
  • 이준호 (한국외국어대학교 환경학과) ;
  • 박갑성 (한국외국어대학교 환경학과) ;
  • 우한준 (한국해양과학기술원 해양방위센터)
  • Received : 2012.02.24
  • Accepted : 2012.11.24
  • Published : 2012.12.28

Abstract

Quantitative understanding of total carbon, total inorganic carbon and total organic carbon contained in ocean sediments is a basic data for interpretation of oceanic sediment environments. Elemental analyzer(EA) is frequently used for the analysis of carbon contents in inland soils and ocean sediments. Carbon and nitrogen contents of the soil reference material analyzed by an EA were 2.30% and 0.21% with standard deviations of 0.02 and 0.01, respectively. Relative standard deviations were 0.01 and 0.06, respectively, representing a high precision. Regression analysis of TOC and TC analysis results for the samples with TOC of less than 2.0% for the site in Hyung-Do showed a linear relationship with a slope of 0.9743($R^2$=0.9989, n=38), and the results of a relationship regression analysis between total organic carbon contents less than 0.5% and average grain size except for two samples showed a linear relationship with a slope of 0.0444($R^2$=0.6937 n=36). TOC contents of surface sediments were in the ranges of 0.10~1.67%(Average $0.26{\pm}0.37%$) with TOC values of 1.67% at S02 sampling site, 1.13% at S07 sampling site, and less than 1.00% at remaining sites. In the case of PC 01 core sediments, TOC showed the highest value of 0.20% near 70 cm. In the case of PC 02 core sediments, the highest value of 0.24% was indicated near 60 cm. The analysis method of organic carbon obtained from Hyung-Do Intertidal zone sediment sample results may be considered applicable to an organic carbon analysis for ocean sediments and useful for organic carbon analysis experiments of ocean sediments with a reduction in time required for the analysis and a high precision coupled with a high accuracy.

해양 퇴적물내 함유된 총탄소(total carbon; TC), 총무기탄소(total inorganic carbon; TIC)와 총유기탄소(total organic carbon; TOC)의 정량적 이해는 해양 저서 퇴적 환경 해석을 위한 기본 자료이다. 원소분석기(elemental analyzer; EA)는 내륙 토양 및 해양 퇴적물의 탄소성분 분석에 많이 이용되고 있다. 원소분석기로 분석한 표준시료샘플(soil reference material; SRM)의 탄소 및 질소함량은 평균 2.30%와 0.21%이었으며, 표준편차(standard deviation)는 각각 0.02, 0.01이었다, 상대표준편차(relative standard deviation; RSD)는 각각 0.01, 0.06으로 높은 정밀도를 나타내었다. 형도 부지의 총유기탄소(TOC) 2.0% 이하 샘플에 대해 총유기탄소(TOC)와 총탄소(TC) 분석치의 회귀분석은 기울기가 0.9743인 직선형 관계($R^2$=0.9989, n=38)를 보였으며, 2개 샘플을 제외한 총유기탄소 0.5% 이하의 총유기탄소량 및 평균입도의 관계 회귀분석 결과는 기울기가 0.0444인 직선형 관계($R^2$=0.6937 n=36)를 나타내었다. 형도 표층퇴적물의 총유기탄소(TOC) 함량은 0.10~1.67%(평균 $0.26{\pm}0.37%$) 범위로 S02 정점에서 1.67%, S07 정점에서 1.31%이고 나머지 점점은 1.00% 이하의 총유기탄소(TOC) 함량을 나타냈다. 주상퇴적물 PC 01 정점의 경우 70 cm 부근에서 총유기탄소(TOC)가 가장 높은 0.20%을 보였고, 주상퇴적물 PC 02 정점의 경우 60 cm 부근에서 가장 높은 0.24%를 나타내었다. 따라서 형도 샘플의 총유기탄소(TOC) 0.5% 이상 함유 샘플에 대해서는 탄산염 같은 무기탄소량이 높은 퇴적물 분석시 오차가 발생할수 있지만, 이와 같은 결과로부터 얻어진 유기탄소분석 방법은 해양 퇴적물의 유기탄소분석에 적용 될 수 있다. 그리고 원소분석기(EA) 정밀도 및 정확도로 해양 퇴적물 표층 및 주상 퇴적물 유기탄소분석 분석 실험에 유용 할 것으로 사료된다.

Keywords

References

  1. Cadee, G.C. (1984) Particulate and dissolved organic carbon and chlorophyll a in the Zaire River, estuary and plume, Netherlands Journal of Sea Research, v.17, p.426-440. https://doi.org/10.1016/0077-7579(84)90059-0
  2. Calvert, S.E. (1976) Mineralogy and geochemistry of nearshore sediments. Chemical Oceanography, 2nd edited by Riley, J.P. and R. Chester. Academic Press, London, v.6, p.187-280.
  3. Cauwet, G. (2002) DOM in the coastal zone, In: Biogeochemistry of marine dissolved organic matter, edited by D.A. Hansell and C.A. Carlson. Academic Press, Amsterdam, Boston, p.579-609.
  4. Chen, R.F. and Bada, J.F. (1992) The fluorescence of dissolved organic matter in seawater. Marine Chemistry, v.37, p.191-221. https://doi.org/10.1016/0304-4203(92)90078-O
  5. Chun. J.H., Son. B.K., Kim. J.H., Ryu. B.J., Kim. H.J., Lee. Y.J. and Bahk. J.J. (2010) Controlling factor of lightness variations in marine core sediments of the Ulleung Basin, East Sea. Controlling factor of lightness variations in marine core sediments of the Ulleung Basin, East Sea, v.46, p.331-344. (in Korean)
  6. Folk, R.L. (1968) Petrology of sedimentary rocks Hemphill's Austin. Texas, p.170.
  7. Google maps. (2012) http://maps.google.co.kr.
  8. Hedges, J.I. (2002) Why dissolved organic matter, In: Biogeochemistry of marine dissolved organic matter, edited by Hansell, D.A. and C.A. Carlson. Academic Press, Amsterdam, p.1-33.
  9. Hwa-Seong City Cultural Foundation. (2009) A Survey on the Natural Heritage of Gojeong-ri Dinosaur Egg Fossil Area. BSPG47360-2129-5, 48p. (in Korean)
  10. Jeong. C.H. (2004) Relationship between Hydrochemical Variation of Groundwater and Gas Tigtness in the Underground Oil Storage Caverns. The Journal of Engineering Geology, v.14, p.259-272. (in Korean)
  11. Kim. I.S. and Park. M.H. (2006a) The study of correlation with distribution of sediment grains and geochemical characteristics in core sediments. Journal of the Geological Society of Korea, v.42, p.353-361. (in Korean)
  12. Kim. I.S., Park. M.H., Lee. Y.J., Ryu. B.J. and Yu. K.M. (2003) Geological and Geochemical Studies on the Late Quaternary Sedimentary Environment of Southwestern Ulleung Basin, East Sea. Economic and Environmental Geology, v.36, p.9-15. (in Korean)
  13. Kim. I.S., Park. M.H., Ryu. K.M. and Ryu. B.J. (2004) Geochemical Characteristics of Core Sediments from the northwestern Ulleung Basin, East Sea: Implications for Paleoenvironmental Changes. Journal of the Geological Society of Korea, v.40, p.1-12. (in Korean)
  14. Kim. J.H., Park. M.H., Kong. G.S., Han. H.C., Cheong. T.J., Choi. J.Y., Kim. J.H., Kang. M.H., Lee. C.W. and Oh. J.H. (2010) Geochemical Results and Implication of the Organic Matter in the Holocene Sediments from the Hupo Basin. Economic and Environmental Geology, v.43, p.1-12. (in Korean)
  15. Kim. K.H., Son. S.K., Son. J.W. and Ju. S.J. (2006b) Methodological Comparison of the Quantification of Total Carbon and Organic Carbon in Marine Sediment. Journal of the Korean Society for Marine Environmantal Engineering, v.9, p.235-242. (in Korean)
  16. King, P. Kennedy, H. Newton, P.P. Jimkells, T.D. Brand, T. Calvert, S. Cauwet, G. Etcheber, H. Head, B. Khripounoff, A. Manighetti, B. and Miquel, J.C. (1998) Analysis of total and organic particles and marine sediment: an interlaboratory comparition. Mar. Che, v.60, p.203- 216. https://doi.org/10.1016/S0304-4203(97)00106-0
  17. Klinkhammer, G.P. McManus, J. Colbert, D. and Rudnicki, M.D. (2000) Behavior of terrestrial dissolved organic matter at the continent-ocean boundary from high-resolution distributions. Geochim. Cosmochim. Acta, v.64, p.2765-2774. https://doi.org/10.1016/S0016-7037(99)00370-1
  18. Lee. Y.J., Yun. H.S., Cheong T.J., Kwak. Y.H. and Oh. J.H. (1998) Geochemical Characteristics of Organic Matter in the Tertiary Sediments from the Blocks, Offshore Korea. The Korean Society of Petroleum Geology, v.6, p.25-36. (in Korean)
  19. Michaelis, W. Ittekkot, V. and Degens, E.T. (1986) River inputs into oceans, In: Biogeochemical processer at the landsea boundary, edited by Lasserre, P. and J.-M. Martin. Elsevier. Amsterdam, p.37-52.
  20. Ministry of Maritime Affairs and Fisheries. (2004) Environmental improvement for Shi-Hwa Lake. BSPM226-00-1607-4, 3p. (in Korean)
  21. Murrell, M.C. and Hollibaugh, J.T. (2000) Distribution and composition of dissolved and particulate organic carbon in Northern san Francisco Bay during low flow conditions, Estuarine. Coastal and Shelf Science, v.51, p.75-90. https://doi.org/10.1006/ecss.2000.0639
  22. Nieuwenhuize, J. Mass, Y.E.M. and Middelburg, J.J. (1994) Rapid analysis of organic carbon and nitrogen in particulate materials. Marine Chemistry, v.45, p.217-224. https://doi.org/10.1016/0304-4203(94)90005-1
  23. Park. J.K., Kim E.S., Kim K.T., Cho S.R., Song T.Y., Yoo. J.K., Kim S.S. and Park. Y.C. (2009) Characteristics in Organic Carbon Distribution in the Seamangeum Area During the Construction of Artificial Sea Dike, Korea. Journal of the Korean Society for Marine Environmental Engineering, v.12, p.75-83. (in Korean)
  24. Park. M.H., Kim I.S. and Lee Y.J. (2002) Characterization of Orhanic Matter in Upper Jurassic Core Samples Drilled in Southern Germany. Economic and Environmental Geology. v.35, p.429-436. (in Korean)
  25. Park. M.H., Ryu. B.J., Kim I.S., Cheong T.C., Lee Y.J. and Yu. K.M. Stratigraphical and Sedimentological Studies on Core Sediments from the Southwestern Ulleung Basin, East Sea. Economic and Environmental Geology, v.35, p.171-177. (in Korean)
  26. Richelle, M. King, A. Albanese, C.L. and Martin, J.O. (1997) Discussion of Papers. Ground Water, v.35, p.1107-1109. https://doi.org/10.1111/j.1745-6584.1997.tb00183.x
  27. Son. B.K., Kim. H.J. and Ahn. G.O. (2009) Mineral Composition of the Sediment of Ulleung Basin, Korea. Journal of the Mineralogical Society of Korea, v.22, p.115- 127. (in Korean)
  28. Ruttenberg, K.C. (1992) Development of a sequential extraction method for different forms of phophorous in marine sediments. Limnology and Oceanography, v.37, p.1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
  29. Udden, J.A. (1914) Mechanical composition of clastic sediments. Bulletin of the Geological Society of America, v.25, p.655-644. https://doi.org/10.1130/GSAB-25-655
  30. Urbansky, E.T. (2001) Total organic carbon analyzers as tools for measuring carbonaceous matter in natural waters. Journal of Environmental Monitoring, v.3, p.103-112.
  31. Van Iperen, J. and Holde, W. (1985) A method for the determination of organic in calcareous marine sediments. Marine Geology. v.64, p.179-187. https://doi.org/10.1016/0025-3227(85)90167-7
  32. Warnken, K.W. and Santschi, P.H. (2004) Biogeochemical behavior of organic carbon in the Trinity River downstream of a large reservoir lake in Texas, USA. Science of the Total environment. v.329, p.131-144. https://doi.org/10.1016/j.scitotenv.2004.02.017
  33. Wu, Y. Zhang, J. Cho, K.W. Hong, G.H. and Chung, C.C. (2004) Origin and transport of sedimentary organic matter in the Yalujiang estuary, North China. Estuaries. v.27, p.583-592. https://doi.org/10.1007/BF02907646
  34. Zhang, J. Liu, S.M. Xu, H. Yu, Z.G. Lai, S.Q. Zhang, H. Geng, G.Y. and Chen, J.F. (1998) Riverine source and estuarine fate of particulate organic carbon from North China in late summer, Estuarine. Coastal and Shelf Science. v.46, p.439-448. https://doi.org/10.1006/ecss.1997.0277

Cited by

  1. The Distribution Characteristics of Grain Size and Organic Matters of Surface Sediments from the Nakdong-Goryeong Mid-watershed vol.27, pp.6, 2018, https://doi.org/10.5322/JESI.2018.27.6.411