DOI QR코드

DOI QR Code

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea

남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가

  • Received : 2019.10.28
  • Accepted : 2020.02.26
  • Published : 2020.02.28

Abstract

CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).

CO2 지중저장은 현재 온실가스 감축을 위한 CCS(Carbon Capture & Storage) 저장기술 중 가장 안정적이고 효과적인 기술로 평가되고 있다. 지중저장 대상 염대수층은 일반적으로 CO2가 초임계상태로 저장될 수 있는 지하 800 m 이상의 심도에 위치하고, 그 상부에 지표로의 CO2 누출을 막는 광역적인 불투수성 덮개암층이 분포해야 한다. 본 연구에서는 남해 대륙붕 탄성파 및 시추공 자료를 해석하여 덮개암으로 활용할 수 있는 현무암층과, 하부 염대수층이 발달하고 있는 현무암 대지 구조를 CO2 지중저장 유망구조로 제시하였다. 연구지역 주입대상 염대수층의 지중저장용량을 평가하기 위해 총 공극률은 시추공 감마 및 음파검층 자료를 이용하여 산출하였으며, 염대수층 구간의 온도/압력 조건을 고려하여 CO2 밀도를 계산하였다. 정확한 주입대상 염대수층의 체적을 산정하기 위해 x, y, z 축 방향으로 일정한 크기를 가지는 3차원 지질 격자 모델을 구성하였고, 염대수층 3차원 공간의 물성 분포를 지구통계학적 기법으로 예측하는 물성 모델링을 수행하여 총 공극률 값을 지질 격자에 할당하였다. U.S. DOE 방법을 이용하여 남해 대륙붕 현무암 대지 구조의 CO2 지중저장용량 평가 결과 평균 약 8,417만 CO2톤(최소 4,207만 ~ 최대 1억 4,379만 CO2톤)이 주입대상 염대수층 구간에 저장 가능한 것으로 예측되었다.

Keywords

References

  1. Aminu, M.D., Nabavi, S.A., Rochelle, C.A. and Manovic, V. (2017) A review of developments in carbon dioxide storage. Applied Energy, v.208, p.1389-1419. https://doi.org/10.1016/j.apenergy.2017.09.015
  2. Asquith, G. and Krygowski, D. (2004) Basic Well Log Analysis. In: American Association of Petroleum Geologists Methods in Exploration Series No. 16, 2nd ed. American Association of Petroleum Geologists, Tulsa, 244p.
  3. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P. and Mathiassen, O.M. (2007) $CO_2$ storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, v.1, p.430-443. https://doi.org/10.1016/S1750-5836(07)00086-2
  4. Bong, P.Y., Lee, H.Y., Kwon, Y.I., Son, J.D., Oh, J.H., Kwak, Y.H., Son, J.D., Cheong, T.J., Ryu, B.J., Son, B.K., Lee, Y.J., Kim, H.J., Hwang, I.G., Park, K.S., Park, K.P., Shin, C.S. and Jo, C.H. (1993) Petroleum Resources Assessment of Sokotra Basin. KIGAM Research Report, KR-93-4A-1, p.3-234.
  5. Chen, Z., Yan, H., Li, J., Zhang, G., Zhang, Z. and Liu, B. (1999) Relationship Between Tertiary Volcanic Rocks and Hydrocarbons in the Liaohe Basin, People's Republic of China. American Association of Petroleum Geologists (AAPG) Bulletin, v.83, p.1004-1014.
  6. Clavier, C.W., Hoyle, R. and Meunier, D. (1971) Quantitative interpretation of thermal neutron decay time lags: Part 1. Fundamentals and techniques. Journal of Petroleum Technology, v.23, p.743-755. https://doi.org/10.2118/2658-A-PA
  7. Cukur, D., Horozal, S., Kim, D.C., Lee, G.H., Han, H.C. and Kang, M.H. (2010) The distribution and characteristics of the igneous complexes in the northern East China Sea Shelf Basin and their implications for hydrocarbon potential. Marine Geophysical Researches, v.31, p.299-313. https://doi.org/10.1007/s11001-010-9112-y
  8. DOE-NETL (U.S. Department of Energy - National Energy Technology Laboratory - Office of Fossil Energy) (2008) Carbon Sequestration Atlas of the United State and Canada, 2nd ed.
  9. Gislason, S.R. and Oelkers, E.H. (2014) Carbon Storage in Basalt. Science, v.344, p.373-374. https://doi.org/10.1126/science.1250828
  10. Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M., Allen, D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B. and Guthrie, G. (2011) U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, v.5, p.952-965. https://doi.org/10.1016/j.ijggc.2011.03.010
  11. Gorecki, C.D., Sorensen, J.A., Bremer, J.M., Knudsen, D.J., Smith, S.A., Steadman, E.N. and Harju, J.A. (2009) Development of Storage Coefficients for Determining the Effective $CO_2$ Storage Resource in Deep Saline Formations. In: Society of Petroleum Engineers International Conference on $CO_2$ Capture, Storage and Utilization, SPE 126444, San Diego, California.
  12. IEA (2017) Energy Technology Perspectives 2017. France, IEA Publications.
  13. IEA GHG (2009) Development of Storage Coefficients for Carbon Dioxide Storage in Deep Saline Formation. Technical Report 2009/13, International Energy Agency Greenhouse Gas R&D Programme (IEA GHG), Cheltenham, Gloucester, UK, 94p.
  14. IPCC (2018) Summary for Policymakers. Global warming of $1.5^{\circ}C$. An IPCC Special Report on the impacts of global warming of $1.5^{\circ}C$ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, Switzerland, 32p.
  15. Johnson, D.E. and Pile, K.E. (2002) Well Logging in Nontechnical Language 2nd Edition. Penn Well Publishing Company, Tulsa, Oklahoma, 289p.
  16. Kang, M.H., Kim, J.H., Kim, K.O., Cheong, S. and Shinn, Y.J. (2018) Assessment of $CO_2$ storage capacity for basalt caprock-sandstone reservoir system in the northern East China Sea. EGU, Geophysical Research Abstracts, v.20, EGU2018-5772.
  17. KIGAM (1997) Hydrocarbon potential of the northern East China Shelf Basin I (in Korean with English abstract). Korea Institute of Geoscience and Mineral Resources (KIGAM) Report, 420p.
  18. Koh, C.S., Yoon, S.H., Lee, D.K. and Yoo, H.S. (2016) Tectonic evolution and depositional environments of Jeju and Socotra basins in the southernmost continental shelf of the South Sea, Korea. Journal of the Geological Society of Korea, v.52, n.3, p.355-371. https://doi.org/10.14770/jgsk.2016.52.3.355
  19. Lee, C., Shinn, Y.J., Han, H.C. and Ryu, I.C. (2018) Structural evolution of two-stage rifting in the northern East China Sea Shelf Basin. Geological Journal, v.54, p.2229-2240. https://doi.org/10.1002/gj.3292
  20. Lee, G.H., Kim, B., Shin, K.S. and Sunwoo, D. (2006) Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin. American Association of Petroleum Geologists (AAPG) Bulletin, v.90, n.2, p.237-260. https://doi.org/10.1306/08010505020
  21. McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y.J., Dooley, J.J. and Davidson, C.L. (2006) Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research, v.111, B12201.
  22. McGrail, B.P., Schaef, H.T., Spane, F.A., Horner, J.A., Owen, A.T., Cliff, J.B., Qafoku, O., Thompson, C.J. and Sullivan, E.C. (2017) Wallula Basalt Pilot Demonstration Project: Post-Injection Results and Conclusions. Energy Procedia, v.114, p.5783-5790. https://doi.org/10.1016/j.egypro.2017.03.1716
  23. Pigott, J.D., Kang, M.H. and Han, H.C. (2013) First order seismic attributes for clastic seismic facies interpretation: Examples from the East China Sea. Journal of Asian Earth Sciences, v.66, p.34-54. https://doi.org/10.1016/j.jseaes.2012.11.043
  24. Raymer, L.L., Hunt, E.R. and Gardner, J.S. (1980) An improved sonic transit time-to-porosity transform. Society of Professional Well Log Analysts, 21st Annual Logging Symposium, Transactions, Paper P.
  25. Shin, S.Y., Kang, M.H., Cheong, S. and Shinn, Y.J. (2019) Assessment of $CO_2$ geological storage capacity for basalt flow structure in eastern Jeju Island. 2019 Joint Conference of the Geological Science & Technology of Korea, KSEEG, GSK, KSPSG, KIGAM, p.207.
  26. Span, R. and Wagner, W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to $1100^{\circ}K$ at pressures up to 800 MPa. Journal of Physical Chemistry Data, v.25, p.1509-1596. https://doi.org/10.1063/1.555991
  27. Thien, B.M.J., Kosakowski, G. and Kulik, D.A. (2015) Differential alteration of basaltic lava flows and hyaloclastites in Icelandic hydrothermal systems. Geothermal Energy, v.3, n.11.
  28. Yoon, S.H., Son, B.K. and Shinn, Y.J. (2009) Review on Geology and Potential Petroleum Systems of Sedimentary Basins in the South Sea of Korea. KIGAM Bulletin, v.13, n.1, p.54-68.
  29. Yun, H., Yi, S., Yi, S., Kim, J.H., Byun, H.S., Kim, G.H. and Park, D.B. (1999) Biostratigraphy and Paleo-environment of the Cheju Sedimentary Basin : Based on Materials from Exploration Wells, Geobuk-1 and Okdom-1. Journal of the Paleontological Society of Korea, v.15, n.1, p.43-94.
  30. Zhou, Z., Zhao, J. and Yin, P. (1989) Characteristics and Tectonic Evolution of the East China Sea, Chinese Sedimentary Basins. Elsevier, p.165-179.