DOI QR코드

DOI QR Code

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application

계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상

  • Gang, Seokgu (Dept. of Civil Engrg., Chungbuk National Univ.) ;
  • Jung, Jongwon (Dept. of Civil Engrg., Chungbuk National Univ.)
  • 강석구 (충북대학교 토목공학과) ;
  • 정종원 (충북대학교 토목공학부)
  • Received : 2023.10.18
  • Accepted : 2023.10.30
  • Published : 2023.11.30

Abstract

Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.

지구 온난화를 유발하는 대기 중 이산화탄소 저감을 위한 해결책으로써 이산화탄소 지중 저장공법이 관심받고 있다. 지중에 이산화탄소를 저장하기 위한 방법으로는 대수층 또는 고갈된 원유층 주입 및 이산화탄소 주입을 통한 원유 회수 증진 등이 있다. 이중 대수층은 다른 저장층에 비해 큰 저장 용량을 가짐으로써, 활용성이 가장 높은 것으로 알려져 있다. 하지만, 제한된 저장 공간에 최대한의 저장 효율을 달성하기 위한 기술이 필요한 실정이다. 따라서, 본 연구에서는 비이온성 및 음이온성 계면활성제를 활용하여 이산화탄소의 저장 효율 향상 기술을 개발하고자 한다. 저장 효율 평가는 유체의 흐름 관찰이 가능한 마이크로모델을 활용하여 수행하였다. 이에 따른 실험 결과, 비이온성 및 음이온성 계면활성제 활용 시 순수한 물인 경우보다 가장 낮은 주입 유량에서 저장 효율은 최소 40% 이상의 향상을 보였다. 하지만, 본 연구에서 활용한 계면활성제의 이온성 및 농도에 따른 유의미한 저장 효율 변화는 도출되지 않았다. 이러한 결과는 향후 이산화탄소 지중 저장을 위한 계면활성제의 선택 및 농도 결정에 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구(No. 20212010200010)이며 이에 감사드립니다.

References

  1. Akutsu, T., Yamaji, Y., Yamaguchi, H., Watanabe, M., Smith Jr, R. L., and Inomata, H. (2007), Interfacial Tension between Water and High Pressure CO2 in the Presence of Hydrocarbon Surfactants, Fluid phase equilibria, Vol.257, No.2, pp.163-168. https://doi.org/10.1016/j.fluid.2007.01.040
  2. Anbari, A., Chien, H. T., Datta, S. S., Deng, W., Weitz, D. A., and Fan, J. (2018), Microfluidic Model Porous Media: Fabrication and Applications, Small, Vol.14, No.18, 1703575.
  3. Angus, S., B. Armstrong, and K.M. de Reuck (1973), International Thermodynamic Tables of the Fluid State Volume 3. Carbon Dioxide. IUPAC Division of Physical Chemistry, Pergamon Press, London, pp.266-359.
  4. Chang, C., Kneafsey, T. J., Wan, J., Tokunaga, T. K., and Nakagawa, S. (2020), Impacts of Mixed-wettability on Brine Drainage and Supercritical CO2 Storage Efficiency in a 2.5-D Heterogeneous Micromodel, Water Resources Research, Vol.56, No.7, e2019WR026789.
  5. Da Rocha, S. R., Harrison, K. L., and Johnston, K. P. (1999), Effect of Surfactants on the Interfacial Tension and Emulsion Formation between Water and Carbon Dioxide, Langmuir, Vol.15, No.2, pp. 419-428. https://doi.org/10.1021/la980844k
  6. Espinoza, D. N., Kim, S. H., and Santamarina, J. C. (2011), CO 2 Geological Storage-Geotechnical Implications, KSCE Journal of Civil Engineering, 15, pp.707-719. https://doi.org/10.1007/s12205-011-0011-9
  7. Gale, J. (2004), Geological Storage of CO2: What do We Know, Where are the Gaps and What More Needs to be Done, Energy, Vol.29, No.9-10, pp.1329-1338. https://doi.org/10.1016/j.energy.2004.03.068
  8. Gang, S. and Jung, J. (2023), Characteristic of Injection According to CO2 Phases Using Surfactants, Journal of the Korean Geo-Environmental Society, Vol.24, No.6, pp.5-11. https://doi.org/10.14481/JKGES.2023.24.6.5
  9. Hu, R., Wan, J., Kim, Y., and Tokunaga, T. K. (2017), Wettability Impact on Supercritical CO2 Capillary Trapping: Pore Scale Visualization and Quantification, Water Resources Research, Vol.53, No.8, pp.6377-6394. https://doi.org/10.1002/2017WR020721
  10. IPCC (2005), IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.
  11. IPCC (2018), Global Warming of 1.5℃.An IPCC Special Report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 616 pp. https://doi.org/10.1017/9781009157940.
  12. Jung, J. W. and Wan, J. (2012), Supercritical CO2 and Ionic Strength Effects on Wettability of Silica Surfaces: Equilibrium Contact Angle Measurements, Energy & Fuels, Vol.26, No.9, pp.6053-6059. https://doi.org/10.1021/ef300913t
  13. Kaldi, J., Daniel, R., Tenthorey, E., Michael, K., Schacht, U., Nicol, A., Underschultz, J., and Backe, G. (2013), Containment of CO2 in CCS: Role of Caprocks and Faults, Energy Procedia, 37, pp. 5403-5410. https://doi.org/10.1016/j.egypro.2013.06.458
  14. Karadimitriou, N. K. and Hassanizadeh, S. M. (2012), A Review of Micromodels and Their Use in Two-phase Flow Studies, Vadose Zone Journal, 11(3).
  15. Kazemifar, F., Blois, G., Kyritsis, D. C., and Christensen, K. T. (2015), A Methodology for Velocity Field Measurement in Multiphase High Pressure Flow of CO2 and Water in Micromodels, Water Resources Research, 51(4), pp.3017-3029. https://doi.org/10.1002/2014WR016787
  16. Kim, S. and Santamarina, J. C. (2014), Engineered CO2 Injection: The Use of Surfactants for Enhanced sweep efficiency, International Journal of Greenhouse Gas Control, 20, pp.324-332. https://doi.org/10.1016/j.ijggc.2013.11.018
  17. Kim, Y., Wan, J., Kneafsey, T. J., and Tokunaga, T. K. (2012), Dewetting of Silica Surfaces Upon Reactions with Supercritical CO2 and Brine: Pore-scale Studies in Micromodels, Environmental science & technology, Vol.46, No.7, pp.4228-4235. https://doi.org/10.1021/es204096w
  18. Negin, C., Ali, S., and Xie, Q. (2017), Most Common Surfactants Employed in Chemical Enhanced Oil Recovery, Petroleum, Vol.3, No.2, pp.197-211. https://doi.org/10.1016/j.petlm.2016.11.007
  19. Nishad, S. and Al-Raoush, R. I. (2020), Impact of Ionic Strength on Colloid Retention in a Porous Media: A Micromodel Study.
  20. Park, T., Joo, H. W., Kim, G. Y., Kim, S., Yoon, S., and Kwon, T. H. (2017), Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon Dioxide/water/quartz Systems, Frontiers in microbiology, 8, 1285.
  21. Peter, A., Yang, D., Eshiet, K. I. I. I., and Sheng, Y. (2022), A Review of the Studies on CO2-Brine--Rock Interaction in Geological Storage Process, Geosciences, Vol.12, No.4, p.168.
  22. Ritchie, H., Roser, M., and Rosado, P. (2020), CO2 and greenhouse gas emissions, Our world in data.
  23. Ryou, J. E. and Jung, J. (2022), Characteristics of Biopolymer Guar Gum Solution Injection for Eco-friendly Ground Reinforcement, Journal of the Korean Society of Hazard Mitigation, Vol.22, No.1, pp.201-207. https://doi.org/10.9798/KOSHAM.2022.22.1.201
  24. Ryou, J. E. and Jung, J. (2022), Penetration Behavior of Biopolymer Aqueous Solutions Considering Rheological Properties, Geomechanics and Engineering, Vol.29, No.3, pp.259-267.
  25. Santamarina, J. C. (2013), CO2 Geologic Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena-From Pore-scale Processes to Macroscale Implications, Georgia Institute of Technology, Atlanta, GA (United States).
  26. Zheng, X., Mahabadi, N., Yun, T. S., and Jang, J. (2017), Effect of Capillary and Viscous Force on CO2 Saturation and Invasion Pattern in the Microfluidic Chip, Journal of Geophysical Research: Solid Earth, Vol.122, No.3, pp.1634-1647. https://doi.org/10.1002/2016JB013908
  27. Zulqarnain, M., Zeidouni, M., and Hughes, R. G. (2017, July), Static and dynamic CO2 storage capacity estimates of a potential CO2 geological sequestration site in Louisiana chemical corridor. In Carbon Management Technology Conference (pp. CMTC-486020). CMTC.