• Title/Summary/Keyword: superconducting material

Search Result 642, Processing Time 0.027 seconds

Fabrication of SmBCO coated conductor using $CeO_2$ single buffer layer ($CeO_2$ 단일 완충층을 이용한 SmBCO 초전도테이프 제조)

  • Kim, T.H.;Kim, H.S.;Oh, S.S.;Yang, J.S.;Ko, R.K.;Ha, D.W.;Song, K.J.;Ha, H.S.;Jung, K.D.;Pa, K.C.;Cho, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.261-262
    • /
    • 2006
  • High temperature superconducting coated conductor has multi-layer structure of protecting layer/superconducting layer/buffer layer/metallic substrate. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is $CeO_2$(cap layer)/YSZ(diffusion barrier layer)/$CeO_2$(seed layer). Multi-buffer layer deposition required many times and process. Therefore single buffer layer deposition study reduce 2G HTS manufacture efforts. Evaporation technique for single buffer deposition method is used for the $CeO_2$ layer. $CeO_2$ single buffer film could be achieved in the chamber. Detailed deposition conditions (temperature and partial gas pressure of deposition) were investigated for the rapid growth of high quality $CeO_2$ single buffer film.

  • PDF

The Research on Insulation Design for Transmission Class HTS Transformer with Composite Winding (복합 권선형 송전급 고온초전도 변압기의 절연설계 연구)

  • Cheon, Hyeon-Gweon;Kwag, Dong-Soon;Choi, Jae-Hyeong;Joung, Jong-Man;Kim, Hyun-Hi;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.204-205
    • /
    • 2006
  • In the response to the demand for electrical energy, much effort aimed to develop and commercialize high temperature superconducting (HTS) power equipments has been made around the world. In Korea, companies and universities are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. The composite winding of transmission class HTS transformer is concentrically arranged H1-L-H2 from center. H1 is continuous disk type, L is layer type and H3 is continuous disk type. For the development of transmission HTS transformer with composite winding, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as breakdown of $LN_2$, barrier, kapton films, surface flashover on FRP in $LN_2$. We are going to compare with measured each value and apply the value to most suitable insulating design of the HTS transformer.

  • PDF

Comparison of EU-DEMO React & Wind Nb3Sn TF CICC current sharing temperature against Wind & React Nb3Sn CICCs

  • Kwon, Soun P.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.7-18
    • /
    • 2022
  • European efforts to design superconducting conductors for a future tokamak have involved Nb3Sn cable-in-conduit conductor (CICC). Nb3Sn coils which undergo heat treatment to activate the Nb3Sn material are mostly produced through the wind-then-react route. However, some Nb3Sn coils have been proposed with CICCs of the react-then-wind route. The latter CICCs are physically constrained due to handling limitations which if not adhered to will result in irrecoverable damage to the Nb3Sn cable inside, nullifying any performance advantage. A group at the Swiss Plasma Center has proposed such CICC designs, constructing samples and testing them for performance. The characteristics and performance of these react & wind (R&W) CICCs are compared with the more common wind & react (W&R) CICCs, and it is found that the R&W designs show more extreme characteristics than typical W&R Nb3Sn CICCs for some parameters that are known to influence CICC performance. Where the R&W CICCs extend the range of those parameters, they also continue trends formed by the W&R CICCs with the parameters. The main observation, however, is that although the current sharing temperature performances of the R&W samples are above the average of the W&R samples they were compared to, they are not the highest. A similar observation applies to a cost comparison of the superconducting material where the R&W CICCs are found to be relatively cheap but not the cheapest. Given these results, clear practical advantages to the R&W CICC design is not evident.

Consideration for the development of room-temperature ambient-pressure superconductor (LK-99) (상온상압 초전도체(LK-99) 개발을 위한 고찰)

  • Sukbae Lee;Jihoon Kim;Sungyeon Im;SooMin An;Young-Wan Kwon;Keun Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.61-70
    • /
    • 2023
  • This paper examines the way of thinking and limitations of physicists regarding the phenomenon of superconductivity and outlines how room-temperature and ambient-pressure superconductors can be developed through the statistical thermodynamic background of the liquid state theory. In hypothesis, the number of electron states should be limited by confining them to a state close to one-Dimension. Simultaneously, the electron-electron interactions should be frequent enough for the electrons to have liquid-like properties. As an example of implementing the hypothesis, our team reports the development of room-temperature and ambient-pressure superconductivity of a material named LK-99 (superconducting compound name developed in the research), whose structure was revealed through numerous experiments with a clue found by chance. Moreover, we summarize the theoretical and experimental basis for the characteristics and discovery of the world's first superconducting material surpassing the critical temperature of 97℃ at atmospheric pressure.

Synthesis of Yba2Cu3O7-y Superconductor using a Low Purity BaCO3 Powder (저 순도 BaCO3 분말을 사용한 Yba2Cu3O7-y 초전도체의 합성)

  • Kim, Chan-Joong;Park, Soon-Dong;Choi, Jung-Suk;Jun, Byung-Hyuk;Moon, Jong-Baik;Lee, Sang-Heon;Sung, Tae-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • [ $YBa_2Cu_3O_{7-y}$ ](123) powders were synthesized by the solid state reaction method using two different purity $BaCO_3$ powders (99.75% and 99.7% purity) and $Y_2O_3$ (99.9%) and CuO (99.9%) powders. The effect of $BaCO_3$ purity on the formation of a 123 phase and the superconducting properties were investigated. The mixtures of raw powders were calcined at temperature ranges of $800^{\circ}C-880^{\circ}C$ in air and finally made into a single grain samples by a melt processing with top seeding. It was found that a 123 phase was well formed at temperature above $870^{\circ}C$, but the purity effect on the 123 formation was negligible. The single-grain 123 samples prepared from the different $BaCO_3$ powders showed the same $T_c$ value of 90.5 K and similar $J_c$ values about $10^4\;A/cm^2$ at 0 T and 77 K, and $10^3\;A/cm^2$ at 2 T and 77 K. This result indicates that the low purity, cheap price $BaCO_3$ powder can be used as a raw material for the fabrication of single-grain, high-$J_c$ superconducting levitator.

Shape and Dielectric Strength of Thermal Bubbles in Liquid Nitrogen (액체질소 중 열기포 형상 및 절연 특성)

  • Baek, Seung-Myeong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.326-331
    • /
    • 2015
  • In this paper, we study the insulating properties of the liquid nitrogen(LN2) including the thermal bubbles. The shape of the thermal bubbles in accordance with the current change was observed in the 77 K and 65 K LN2. According to the temperature of liquid nitrogen, bubbles were generated differently. The round shape of the bubble is occurred in 77 K LN2. But the layer shape of bubble is occurred in 65 K LN2. When the bubbles present, the dielectric strength of liquid nitrogen is low. However, the breakdown patterns were different according to the electrode arrangement. AC breakdown voltage(BDV) was lower than the DC BDV due to the influence of bubbles. Therefore, the design of a high-voltage superconducting equipments should consider the bubbles.

Sticking Characteristics in BiSrCaCuO Thin Film Fabricated by Layer-by-Layer Sputtering Method (순차 스퍼터법으로 제작한 BiSrCaCuO 박막의 부착 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.45-48
    • /
    • 2003
  • BiSrCaCuO thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

Electrochemistry Coating Method (전기화학 Coating Method)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.372-373
    • /
    • 2009
  • In this work, the effects of substrate on the formation of YBaCuO by CVD were investigated by observing the microstructure and the crystallographic orientation and by measuring the temperature dependence of electrical resistance. Source materials used to synthesize the YBaCuO superconducting film were beta-diketone chelates of Y, Ba and Cu. These chelates were evaporated at $137-264^{\circ}C$. The source vapors of Y, Ba and Cu were transported into hot zone by using Ar gas and $O_2$ gas was introduced separately.

  • PDF

Preparation and Characterization of Epitaxial $YBa_2Cu_3O_{7-\delta}$ Thin Films for Fabrication of High-$T_{c}$ Superconducting Microwave Devices (마이크로파 소자 응용을 위한 고온초전도 $YBa_2Cu_3O_{7-\delta}$ 에피택셜 박막의 제조 및 특성분석)

  • 강광용;한석길;김제하;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.26-30
    • /
    • 1995
  • We describe the preparation and characterization of epitaxial thin films made with high temperature superconductor, $YBa_2Cu_3O_{7-\delta}$. The influence of processing parameters for YBCO thin films on MgO substrates in-situ grown by the pulsed laser deposition, including parameters of a laser beam energy, oxygen pressure, substrate temperature, target-substrate dis-tance is discussed. The characteristics of YBCO thin films were analyzed by using XRD, R-T measurement, AFM, crosssectional TEM, and RBS. For examples of microwave device applications, The fabrication and characterization of the microstrip lowpass filter and bandpass filter are also presented.

  • PDF

Intelligent Energy Harvesting Power Management and Advanced Energy Storage System (지능형 에너지 저장시스템과 ESS 개발을 위한 소재 및 공정 기술)

  • Heo, Kwan-Jun;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.417-427
    • /
    • 2014
  • Renewable energy sources such as solar, wind and hydro provides utilizing renewable power and reduce the using fossil fuels. On the other hand, it is too critical to apply power system due to the intermittent nature of renewable energy sources, the continuous fluctuations of the power load, and the storage with high energy density. Energy storage system, including pumped-hydroelectric energy storage, compressed-air energy storage, superconducting magnetic energy storage, and electrochemical devices like batteries, supercapacitors and others have shown that solve some of the challenges. In this paper, we review the current state of applications of energy storage systems, and atomic layer deposition technology, graphene materials on the energy storage systems and processes.