DOI QR코드

DOI QR Code

Comparison of EU-DEMO React & Wind Nb3Sn TF CICC current sharing temperature against Wind & React Nb3Sn CICCs

  • Kwon, Soun P. (Korea Institute of Fusion Energy)
  • Received : 2021.12.14
  • Accepted : 2022.04.07
  • Published : 2022.06.30

Abstract

European efforts to design superconducting conductors for a future tokamak have involved Nb3Sn cable-in-conduit conductor (CICC). Nb3Sn coils which undergo heat treatment to activate the Nb3Sn material are mostly produced through the wind-then-react route. However, some Nb3Sn coils have been proposed with CICCs of the react-then-wind route. The latter CICCs are physically constrained due to handling limitations which if not adhered to will result in irrecoverable damage to the Nb3Sn cable inside, nullifying any performance advantage. A group at the Swiss Plasma Center has proposed such CICC designs, constructing samples and testing them for performance. The characteristics and performance of these react & wind (R&W) CICCs are compared with the more common wind & react (W&R) CICCs, and it is found that the R&W designs show more extreme characteristics than typical W&R Nb3Sn CICCs for some parameters that are known to influence CICC performance. Where the R&W CICCs extend the range of those parameters, they also continue trends formed by the W&R CICCs with the parameters. The main observation, however, is that although the current sharing temperature performances of the R&W samples are above the average of the W&R samples they were compared to, they are not the highest. A similar observation applies to a cost comparison of the superconducting material where the R&W CICCs are found to be relatively cheap but not the cheapest. Given these results, clear practical advantages to the R&W CICC design is not evident.

Keywords

Acknowledgement

Support for this work was provided by the Korea Institute of Fusion Energy under a R&D program (project code 1711124794) funded by the government of the Republic of Korea. All views and conclusions are those of the author and do not necessarily reflect those of the Institute nor any funding entity.

References

  1. G. Eason, B. Noble, I. N. Sneddon, G. Federici, C. Bachmann, L. Barucca, C. Baylard, W. Biel, L. V. Boccaccini, C. Bustreo, S. Ciattaglia, F. Cismondi, V. Corato, C. Day, E. Diegele, T. Franke, E. Gaio, C. Gliss, T. Haertl, A. Ibarra, J. Holden, G. Keech, R. Kembleton, A. Loving, F. Maviglia, J. Morris, B. Meszaros, I. Moscato, G. Pintsuk, M. Siccinio, N. Taylor, M. Q. Tran, C. Vorpahl, H. Walden, and J. H. You, "Overview of the DEMO staged design approach in Europe," Nucl. Fusion, vol. 59, no. 6, Art. ID. 066013, 2019.
  2. V. Corato, T. Bagni, M. E. Biancolini, R. Bonifetto, P. Bruzzone, N. Bykovsky, D. Ciazynski, M. Coleman, A. della Corte, A. Dembkowska, A. Di Zenobio, M. Eisterer, W. H. Fietz, D. X. Fischer, E. Gaio, L. Giannini, F. Giorgetti, R. Heller, I. Ivashov, B. Lacroix, M. Lewandowska, A. Maistrello, L. Morici, L. Muzzi, A. Nijhuis, F. Nunio, A. Panin, X. Sarasola, L. Savoldi, K. Sedlak, B. Stepanov, G. Tomassetti, A. Torre, S. Turtu, D. Uglietti, R. Vallcorba, K.-P. Weiss, R. Wesche, M. J. Wolf, K. Yagotintsev, L. Zani, and R. Zanino, "Progress in the design of the superconducting magnets for the EU DEMO," Fusion Eng. Design, vol. 136, part B, pp. 1597-1604, 2018. https://doi.org/10.1016/j.fusengdes.2018.05.065
  3. L. Zani, C. M. Bayer, M. E. Biancolini, R. Bonifetto, P. Bruzzone, C. Brutti, D. Ciazynski, M. Coleman, I. Duran, M. Eisterer, W. H. Fietz, P. V. Gade, E. Gaio, F. Giorgetti, W. Goldacker, F. Gomory, X. Granados, R. Heller, P. Hertout, C. Hoa, A. Kario, B. Lacroix, M. Lewandowska, A. Maistrello, L. Muzzi, A. Nijhuis, F. Nunio, A. Panin, T. Petrisor, J.-M. Poncet, R. Prokopec, M. Sanmarti Cardona, L. Savoldi, S. I. Schlachter, K. Sedlak, B. Stepanov, I. Tiseanu, A. Torre, S. Turtu, R. Vallcorba, M. Vojenciak, K.-P. Weiss, R. Wesche, K. Yagotintsev, and R. Zanino, "Overview of Progress on the EU DEMO Reactor Magnet System Design," IEEE Trans. Appl. Supercond., vol. 26, no. 4, Art. ID. 4204505, 2016.
  4. L. Muzzi, A. Anemona, A. della Corte, A. Di Zenobio, S. Turtu, P. Bruzzone, K. Sedlak, B. Stepanov, C. Brutti, M. E. Biancolini, L. Reccia, and J. Harman, "Assessment studies and manufacturing trials for the conductors of DEMO TF coils," IEEE. Trans. Appl. Supercond., vol. 25, no. 3, Art. ID. 4200205, 2015.
  5. B. S. Lim, J. Y. Choi, S. I. Lee, Y. Chu, C. S. Kim, I. S. Woo, D. J. Kim, N. H. Song, W. W. Park, Y. J. Song, D. K. Lee, J. J. Joo, G. S. Lee, S. J. An, K. P. Kim, M. S. Ko, W. Chung, K. Pak, H. K. Park, K. Kim, and J. S. Bak, "Development of CICC for KSTAR superconducting magnet system," IEEE. Trans. Appl. Supercond., vol. 16, no. 2, pp. 743-746, 2006. https://doi.org/10.1109/TASC.2006.870530
  6. N. Mitchell, A. Devred, P. Libeyre, B. Lim, F. Savary, and ITER MAGNET DIVISION, "The ITER magnets: design and construction status," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 4200809, 2012.
  7. N. Mitchell, "Assessment of conductor degradation in the ITER CS insert coil and implications for the ITER conductors," Supercond. Sci. Technol., vol. 20, no. 1, pp. 25-34, 2007. https://doi.org/10.1088/0953-2048/20/1/005
  8. N. Mitchell, M. Breschi, and V. Tronza, "The use of Nb3Sn in fusion: lessons learned from the ITER production including options for management of performance degradation," Supercond. Sci. Technol., vol. 33, no. 5, Art. ID. 054007, 2020.
  9. P. Bruzzone, K. Sedlak, and B. Stepanov, "High current superconductors for DEMO," Fusion Eng. Design, vol. 88, no. 9-10, pp. 1564-1568, 2013. https://doi.org/10.1016/j.fusengdes.2012.12.004
  10. V. Corato, R. Bonifetto, P. Bruzzone, D. Ciazynski, M. Coleman, E. Gaio, R. Heller, B. Lacroix, M. Lewandowska, A. Maistrello, L. Muzzi, S. Nicollet, A. Nijhuis, F. Nunio, A. Panin, L. Savoldi, K. Sedlak, A. Torre, S. Turtu, R. Vallcorba, R. Wesche, L. Zani, and R. Zanino, "Common operating values for DEMO magnets design for 2016," EUROFusion Programme Management Unit, Oxon, United Kingdom, IDM Ref. No. EFDA_D_2MMDTG, 2016.
  11. T. Bagni, A. Devred, and A. Nijhuis, "Strand level modelling of contact resistance and coupling loss for EU-DEMO-TF prototype conductors," Supercond. Sci. Technol., vol. 32, no. 10, Art. ID. 105012, 2019.
  12. K. Yagotintsev and A. Nijhuis, "AC loss, interstrand resistance and mechanical properties of prototype EU DEMO TF conductors up to 30000 load cycles," Supercond. Sci. Technol., vol. 31, no. 2, Art. ID. 025010, 2018.
  13. L. Muzzi and A. Di Zenobio, "Final Report on Deliverable: Fabrication of two short length TF conductor sections, RW1 and WR1," EUROFusion, Garching, Germany, TS Ref. No. MAG-MCD-4.2 (EFDA_D_2MA95F), 2015.
  14. P. Bruzzone, K. Sedlak, B. Stepanov, R. Wesche, L. Muzzi, M. Seri, L. Zani, and M. Coleman, "Design, manufacture and test of a 82 kA React&Wind TF conductor for DEMO," IEEE Trans. Appl. Supercond., vol. 26, no. 4, Art. ID. 4801805, 2016.
  15. K. Sedlak, P. Bruzzone, X. Sarasola, B. Stepanov, and R. Wesche, "Design and R&D for the DEMO toroidal field coils based on Nb3Sn React and Wind method," IEEE Trans. Appl. Supercond., vol. 27, no. 4, Art. ID. 4800105, 2017.
  16. P. Bruzzone, K. Sedlak, X. Sarasola, B. Stepanov, D. Uglietti, R. Wesche, L. Muzzi, and A. della Corte, "A prototype conductor by react&wind method for the EUROfusion DEMO TF coils," IEEE Trans. Appl. Supercond., vol. 28, no. 3, Art. ID. 4202705, 2018.
  17. K. Sedlak, P. Bruzzone, B. Stepanov, R. Wesche, X. Sarasola, D. Uglietti, V. D'Auria, C. Vorpahl, L. Affinito, L. Muzzi, A. della Corte, and V. Corato, "DC test results of the DEMO TF react&wind conductor prototype no. 2," IEEE Trans. Appl. Supercond., vol. 29, no. 5, Art. ID. 4801005, 2019.
  18. K. Sedlak, P. Bruzzone, B. Stepanov, and V. Corato, "AC loss measurement of the DEMO TF react&wind conductor prototype no. 2," IEEE Trans. Appl. Supercond., vol. 30, no. 4, Art. ID. 5900404, 2020.
  19. P. Bruzzone, B. Stepanov, D. Uglietti, R. Wesche, and K. Sedlak, "EDIPO: The Test Facility for High-Current High-Field HTS Superconductors," IEEE Trans. Appl. Supercond., vol. 26, no. 2, Art. ID. 9500106, 2016.
  20. G. Croari and P. Bruzzone, "From Conception to Commissioning of EDIPO and SULTAN Quench Detection Systems," IEEE Trans. Appl. Supercond., vol. 24, no. 3, Art. ID. 4701705, 2014.
  21. P. Bruzzone, A. Anghel, A. Fuchs, G. Pasztor, B. Stepanov, M. Vogel, and G. Vecsey, "Upgrade of operating range for SULTAN test facility," IEEE Trans. Appl. Supercond., vol. 12, no. 1, pp. 520-523, 2002. https://doi.org/10.1109/TASC.2002.1018457
  22. S. P. Kwon, "Examination of design parameters affecting Nb3Sn CICC current sharing temperature using necessary condition analysis," Supercond. Sci. Technol., vol. 34, no. 8, Art. ID. 085006, 2021.
  23. J. Dul, "Necessary Condition Analysis (NCA): logic and methodology of 'necessary but not sufficient' causality," Organizational Research Methods, vol. 19, issue 1, pp. 10-52, 2016. https://doi.org/10.1177/1094428115584005
  24. D. Bocian, G. Ambrosio, and G. M. Whitson, "Measurements of Nb3Sn conductor dimension changes during heat treatment," AIP Conf. Proc., vol. 1435, pp. 193-200, 2012.
  25. E. Rochepault, P. Ferracin, G. Ambrosio, M. Anerella, A. Ballarino, A. Bonasia, B. Bordini, D. Cheng, D. R. Dietderich, H. Felice, L. Garcia Fajardo, A. Ghosh, E. F. Holik, S. Izquierdo Bermudez, J. C. Perez, I. Pong, J. Schmalzle, and M. Yu, "Dimensional changes of Nb3Sn Rutherford cables during heat treatment," IEEE Trans. Appl. Supercond., vol. 26, no. 4, Art. ID. 4802605, 2016.
  26. C. Scheuerlein, J. Andrieux, M. Michels, F. Lackner, C. Meyer, R. Chiriac, F. Toche, M. Hagner, and M. Di Michiel, "Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires," Supercond. Sci. Technol., vol. 33, no. 3, Art. ID. 034004, 2020.
  27. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, C. Jong, F. Lillaz, N. Mitchell, G. Romano, and A. Vostner, "Challenges and status of ITER conductor production," Supercond. Sci. Technol., vol. 27, no. 4, Art. ID. 044001, 2014.
  28. H. Kajitani, T. Hemmi, T. Suwa, Y. Takahashi, K. Matsui, and N. Koizumi, "Development of cable-in-conduit conductor for ITER CS in Japan," SN Appl. Sciences, vol. 1, no. 2, Art. ID. 182, 2019.
  29. R. M. Scanlan, D. R. Dietderich, and B. A. Zeitlin, "Development of cost-effective Nb3Sn conductors for the next generation hadron colliders," AIP Conf. Proc., vol. 614, pp. 949-957, 2002.
  30. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, M. Jewell, N. Mitchell, I. Pong, and A. Vostner, "Status of ITER conductor development and production," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 4804909, 2002.
  31. M. D. Bird, H. Bai, S. Bole, J. Chen, I. R. Dixon, H. Ehmler, A. V. Gavrilin, T. A. Painter, P. Smeibidl, J. Toth, H. Weijers, T. Xu, and Y. Zhai, "The NHMFL hybrid magnet projects," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 1612-1616, 2009. https://doi.org/10.1109/TASC.2009.2018269