DOI QR코드

DOI QR Code

Synthesis of Yba2Cu3O7-y Superconductor using a Low Purity BaCO3 Powder

저 순도 BaCO3 분말을 사용한 Yba2Cu3O7-y 초전도체의 합성

  • Kim, Chan-Joong (Nuclear Material Technology Development Team, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Nuclear Material Technology Development Team, Korea Atomic Energy Research Institute) ;
  • Choi, Jung-Suk (Nuclear Material Technology Development Team, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Nuclear Material Technology Development Team, Korea Atomic Energy Research Institute) ;
  • Moon, Jong-Baik (Division of Electronics Engineering, Sun Moon University) ;
  • Lee, Sang-Heon (Division of Electronics Engineering, Sun Moon University) ;
  • Sung, Tae-Hyun (Superconductivity and Application Group of Korea Electric Powder Research Institute)
  • 김찬중 (한국원자력연구원 나노소재응용랩) ;
  • 박순동 (한국원자력연구원 나노소재응용랩) ;
  • 최정숙 (한국원자력연구원 나노소재응용랩) ;
  • 전병혁 (한국원자력연구원 나노소재응용랩) ;
  • 문종백 (선문대학교 전자공학부) ;
  • 이상헌 (선문대학교 전자공학부) ;
  • 성태현 (한국전력연구원 초전도응용그룹)
  • Published : 2008.02.28

Abstract

[ $YBa_2Cu_3O_{7-y}$ ](123) powders were synthesized by the solid state reaction method using two different purity $BaCO_3$ powders (99.75% and 99.7% purity) and $Y_2O_3$ (99.9%) and CuO (99.9%) powders. The effect of $BaCO_3$ purity on the formation of a 123 phase and the superconducting properties were investigated. The mixtures of raw powders were calcined at temperature ranges of $800^{\circ}C-880^{\circ}C$ in air and finally made into a single grain samples by a melt processing with top seeding. It was found that a 123 phase was well formed at temperature above $870^{\circ}C$, but the purity effect on the 123 formation was negligible. The single-grain 123 samples prepared from the different $BaCO_3$ powders showed the same $T_c$ value of 90.5 K and similar $J_c$ values about $10^4\;A/cm^2$ at 0 T and 77 K, and $10^3\;A/cm^2$ at 2 T and 77 K. This result indicates that the low purity, cheap price $BaCO_3$ powder can be used as a raw material for the fabrication of single-grain, high-$J_c$ superconducting levitator.

Keywords

References

  1. M. K. Wu, J. Ashburn, C. J. Torng, P. H. Meng, L. Gao, Z. J. Haung, U. Q. Wang, and C. W. Chu: Phys. Rev. Lett., 58 (1987) 908 https://doi.org/10.1103/PhysRevLett.58.908
  2. E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer and J. V. Waszczack: Appl. Phys. Lett., 55 (1989) 283 https://doi.org/10.1063/1.102387
  3. J. W. Ekin, T. M. Larson, A. M. Hermann, Z. Z. Sheng, K. Togano and H. Kumakura: Physica C, 160 (1990) 489 https://doi.org/10.1016/0921-4534(89)90425-5
  4. A. R. Bishop, R. L. Martin, K. A. Müller and Z. Tesanivic: Z. Phys., B76 (1989) 1908
  5. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnacht and H. D. Keith: Appl. Phys. Lett., 52 (1988) 2074 https://doi.org/10.1063/1.99751
  6. U. Welp, W. Kwok, G. W. Crabtree, K. G. Vandervoort and J. Z. Liu: Phys. Rev. Lett., (1989) 1908 https://doi.org/10.1103/PhysRevLett.62.1908
  7. J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone II, N. Zaluzec, B. Flandermeyer, O. F. de Lima, M. Hong, J. Kwo and S. Liou: J. Appl. Phys., 62 (1987) 4821 https://doi.org/10.1063/1.338985
  8. C. J. Kim, K. B. Kim, S. C. Kwon, I. S. Chang and D. Y. Won: J. Mater. Sci. Lett., 11 (1992) 346 https://doi.org/10.1007/BF00729178
  9. C. J. Kim, K. B. Kim, K. W. Lee, C. T. Lee, G. W. Hong, I. S. Chang and D. Y. Won: J. Mater. Lett., 11 (1991) 241 https://doi.org/10.1016/0167-577X(91)90194-B
  10. Y. A. Jee, C. J. Kim, T. H. Sung and G. W. Hong: Supercond. Sci. Technol., 13 (2000) 195 https://doi.org/10.1088/0953-2048/13/2/314
  11. C. P. Bean: Phys. Rev. Lett., 8 (1962) 250 https://doi.org/10.1103/PhysRevLett.8.250
  12. C. J. Kim and G. W. Hong, Supercond. Sci. Technol., 12 (1999) R27 https://doi.org/10.1088/0953-2048/12/3/001