DOI QR코드

DOI QR Code

Intelligent Energy Harvesting Power Management and Advanced Energy Storage System

지능형 에너지 저장시스템과 ESS 개발을 위한 소재 및 공정 기술

  • Heo, Kwan-Jun (Department of Computer Engineering, Chungbuk National University) ;
  • Kim, Sung-Jin (Department of Computer Engineering, Chungbuk National University)
  • 허관준 (충북대학교 전자정보대학) ;
  • 김성진 (충북대학교 전자정보대학)
  • Received : 2014.05.19
  • Accepted : 2014.06.10
  • Published : 2014.07.01

Abstract

Renewable energy sources such as solar, wind and hydro provides utilizing renewable power and reduce the using fossil fuels. On the other hand, it is too critical to apply power system due to the intermittent nature of renewable energy sources, the continuous fluctuations of the power load, and the storage with high energy density. Energy storage system, including pumped-hydroelectric energy storage, compressed-air energy storage, superconducting magnetic energy storage, and electrochemical devices like batteries, supercapacitors and others have shown that solve some of the challenges. In this paper, we review the current state of applications of energy storage systems, and atomic layer deposition technology, graphene materials on the energy storage systems and processes.

Keywords

References

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A., 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
  2. M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L.D.D. Harvey, S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G. Watts, T.M.L. Wigley, and D. J. Wuebbles, Nature, 395, 881 (1998). https://doi.org/10.1038/27638
  3. D. G. Nocera, Daedalus, 135, 112 (2006). https://doi.org/10.1162/daed.2006.135.4.112
  4. D. Abbott, Proc. IEEE, 98, 42 (2010). https://doi.org/10.1109/JPROC.2009.2035162
  5. D. J. C. MacKay, Sustainable Energys-Without the Hot Air (UIT Cambridge, Cambridge, UK, 2009).
  6. K. Caralis, A. Rados, and Zervos, Renewable and Sustainable Energy Reviews, 14, 2221 (2010). https://doi.org/10.1016/j.rser.2010.02.008
  7. Z. Glasnovic and J. Margeta, Renewable Energy, 34, 1742 (2009). https://doi.org/10.1016/j.renene.2008.12.033
  8. P. Denholm, Renewable Energy, 31, 1355 (2006). https://doi.org/10.1016/j.renene.2005.07.001
  9. P. Atkins, Physical Chemistry, 6th ed. (Freeman, New York, 1998).
  10. H. Lund, G. Salgi, Energy Conversion and Management, 50, 1172 (2009). https://doi.org/10.1016/j.enconman.2009.01.032
  11. B. Bolund, H. Bernhoff, and M. Leijon, Renewable Sustainable Energy Rev., 11, 235 (2007). https://doi.org/10.1016/j.rser.2005.01.004
  12. R. J. Loyd, S. M. Schoenung, T. Nakamura, W. V. Hassenzahl, J. D. Rogers, J. R. Purcell, D. W. Lieurance, and M. A. Hilal, IEEE Trans. Magn., 23, 1323 (1987). https://doi.org/10.1109/TMAG.1987.1065071
  13. W. V. Hassenzahl, D. W. Hazelton, B. K. Johnson, P. Komarek, M. Noe, and C. T. Reis, Proc. IEEE, 92, 1655 (2004). https://doi.org/10.1109/JPROC.2004.833674
  14. M. R. Palacin, Chem. Soc. Rev., 38, 2565 (2009). https://doi.org/10.1039/b820555h
  15. P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem., Int. Ed., 47, 29 (2008).
  16. R. M. Dell, D. A. J. Rand, Understanding Batteries (Royal Society of Chemistry: Cambridge, UK, 2001).
  17. S.F.J.J. Flipsen, Power Sources, 162, 927 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.007
  18. A. K. Shukla, S. Venugopalan, and B. J. Hariprakash, Power Sources, 100, 125 (2001). https://doi.org/10.1016/S0378-7753(01)00890-4
  19. A. Ritchie and W. J. Howard, Power Sources, 162, 809 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.014
  20. J. L. J. Sudworth, Power Sources, 11, 143 (1984). https://doi.org/10.1016/0378-7753(84)80080-4
  21. Y. C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, and Y. Shao-Horn, Electrochem. Solid State Lett., 13, A69 (2010). https://doi.org/10.1149/1.3363047
  22. C. Chakkaravarthy, A. K. Abdul Waheed, and H.V.K.J. Udupa, Power Sources, 6, 203 (1981). https://doi.org/10.1016/0378-7753(81)80027-4
  23. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  24. C. K. Chan, H Peng, G. Liu, K. McIlwrath, and X. F. Zhang, Nature Nanotech., 3, 31 (2007).
  25. M. A. Reddy and M. Fichtner, Journal of Materials Chemistry, 21, 17059 (2011). https://doi.org/10.1039/c1jm13535j
  26. J. R. Bolton and D. O. Hall, Annu. Rev. Energy, 4, 353 (1979). https://doi.org/10.1146/annurev.eg.04.110179.002033
  27. N. A. Kaskhedikar, J. Maier, Adv. Mater., 21, 2664 (2009). https://doi.org/10.1002/adma.200901079
  28. M. H. Liang, B. Luo, and L. J. Zhi, Int. J. Energy Res., 33, 1161 (2009). https://doi.org/10.1002/er.1598
  29. M. Liang and L. Zhi, J. Mater. Chem., 19, 5871 (2009). https://doi.org/10.1039/b901551e
  30. M. Pumera, Chem. Record, 9, 211 (2009). https://doi.org/10.1002/tcr.200900008
  31. Y. Si and E. T. Samulski, Chem. Mater., 20, 6792 (2008). https://doi.org/10.1021/cm801356a
  32. I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, J. Electrochem. Soc., 149, A39 (2002). https://doi.org/10.1149/1.1426397
  33. S. Gautier, F. Leroux, E. Frackowiak, A. M. Faugere, J. N. Rouzaud, and F. Beguin, J. Phys. Chem., 105, 5794 (2001). https://doi.org/10.1021/jp000892p
  34. X. Wang, Z. Zeng, H. Ahn, and G. Wang, Appl. Phys. Lett., 95, 183103 (2009). https://doi.org/10.1063/1.3259650
  35. G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, and K. Kim, J. Mater. Chem., 19, 8378 (2009). https://doi.org/10.1039/b914650d
  36. S. L. Chou, J. L. Wang, M. Choucair, H. K. Liu, J. A. Stride, and S. X. Dou, Electrochem. Commun., 12, 303 (2010). https://doi.org/10.1016/j.elecom.2009.12.024
  37. E. Yoo, J. Kim , E. Hosono, H. Zhou, T. Kudo, and I. Honma, Nano Lett., 8, 2277 (2008). https://doi.org/10.1021/nl800957b
  38. A. V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater., 21, 5004, (2009). https://doi.org/10.1021/cm902413c
  39. D. Wang, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. V. Saraf, J. Zhang, I. A. Aksay, and J. Liu, ACS Nano, 3, 907 (2009). https://doi.org/10.1021/nn900150y
  40. S. M. Paek, E. Yoo, and I. Honma, Nano Lett., 9, 72 (2009). https://doi.org/10.1021/nl802484w
  41. S. Yang, G. Cui, S. Pang, Q. Cao, U. Kolb, X. Fang, J. Maier, and K. Mullen, ChemSus Chem., 3, 236 (2010). https://doi.org/10.1002/cssc.200900106
  42. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  43. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem., C113, 13103 (2009).
  44. Q. Peng, J. S. Lewis, and Paul G. Hoertz, J. T. Glass, and G. N. Parsons, J. Vac. Sci. Technol. A, 30, 010803 (2012). https://doi.org/10.1116/1.3672027
  45. R. Shah, N. Mithulananthan, and R. C. Bansal, Appl Energ., 96, 235 (2012). https://doi.org/10.1016/j.apenergy.2011.09.035
  46. X. Meng, X. Q. Yang, and X. Sun, Adv. Mater., 24, 3589 (2012). https://doi.org/10.1002/adma.201200397
  47. F. Werner, W. Stals, R. Gortzen, B. Veith, R. Brendel, and J. Schmidt, Energy Procedia, 8, 301 (2011). https://doi.org/10.1016/j.egypro.2011.06.140
  48. E. D. Litta, P. E. Hellstrom, C. Henkel, S. Valerio, A. Hallen, and M. Ostling, J. Electrochem. Soc., 160, D538 (2013). https://doi.org/10.1149/2.056311jes