• Title/Summary/Keyword: superconducting levitation magnet

Search Result 25, Processing Time 0.029 seconds

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

High-Tc Superconducting Levitation Magnet (고온초전도 자기부상 마그네트)

  • Bae, Duck-Kweon;Cho, Hung-Je;Kim, Bong-Seop;Jho, Jeong-Min;Sung, Ho-Kyung;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.681-682
    • /
    • 2006
  • This paper deals with the preliminary study on the HTSC levitation magnet for MAGLEV operating in persistent current mode (PCM). The high temperature superconducting (HTSC) levitation magnet consists of two single-pancake type coils wound with Bi-2223 wire and a persistent current switch (PCS). The levitation magnet was designed by using 3-D finite element analysis. The suspension system for high-speed electrodynamic suspension (EDS) maglev should operated in persistent current mode. It is important to develop a technology to minimize the joint resistance of splice between two HTSC wires. The PCS was observed with respect to various magnitude of charging current. Based on these results, the levitation system using HTSC wire will be further studied.

  • PDF

Study on the Characteristics of a Small Scale HTSC Levitation Magnet (소형 초전도 부상자석의 특성 연구)

  • Cho, Hung-Je;Bae, Duck-Kweon;Lee, Jong-Min;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.76-81
    • /
    • 2007
  • This paper deals with the characteristics of a small scale $high-T_c$ superconducting(HTSC) levitation system. The levitation tester. which models after electrodynamic suspension(EDS) maglev, consists of one HTSC magnet, a reaction plate, and force measuring components. Instead of moving magnet, AC current was applied to the fixed HTSC magnet. The magnet also has persistent current switch(PCS). The inductance of the magnet was 18.5 mH and total joint resistance of the magnet was $5.74{\times}10^{-7}\Omega$. AC current was applied into the HTSC magnet with various frequencies and the levitation force was calculated and measured. According to the increase of the vehicle speed, the levitation force was saturated.

Development of the Program for levitation Force Analysis in a Superconducting Bulk (초전도 벌크의 부상력 해석 프로그램 개발)

  • 한승용;김우석;차귀수;한송엽
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.20-24
    • /
    • 1999
  • The study of HTS(High Temperature Superconducting) bulk in magnetic levitation system requires the calculation of currents distribution in HTS bulk is very important to determine this forces. We have made computer program to find this current distribution and levitation force. J-E relation in HTS bulk is extremely nonlinear, so iteration method must be used to determine the current distribution. We developed the method to determine the current distribution in the unifrom-field model and, using this method, calculated the levitation force in permanent-magnet-levitation model.

  • PDF

Repulsive force analysis of a new maglev scheme with an AC superconducting magnet (교류용 초전도자석을 이용한 새로운 자기부상시스템의 반발력 해석)

  • 김동훈;이지황;차귀수;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.18-23
    • /
    • 1996
  • This paper proposes a new levitation scheme for EDS MAGLEV vehicle with AC superconducting magnet(ACSCM). The eddy current and the levitation force are generated at all speed including stand still in this scheme, therefore, the auxiliary wheels on DCSCM can be eliminated. To reduce the ac loss of the magnet, the ACSCM also can be operated as a DCASCM at high speed because levitation force generated by DCSCM is enough at high speed. To prove the effectiveness of the proposed scheme, the repulsive force and power loss versus frequency of ACSCM is calculated. For comparison, characteristics of DCSCM of same cross section versus speed are also given. (author). 6 refs., 9 figs.

  • PDF

Limitation of a levitation system using a superconducting bulk (초전도 벌크를 이용한 자기부상 시스템의 한계)

  • 한승용;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.61-64
    • /
    • 2001
  • Levitation force of a new magnetic levitation system using a super-conducting bulk magnet(SBM) and a permanent magnet(PM) was numerically calculated. The non-linear J-E relation of a SBM was modeled using a critical state model and iteration method, and demagnetization of a PM was considered using a demagnetization curve of a real PM. The maximum limitation of levitation force was found according to increasing the trapped field in a SBM. Finite element method was used for numerical calculation.

  • PDF

Analysis on Superconducting Electrodynamic Suspension for Very High Speed Maglev (초고속 자기부상열차를 위한 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Lee, Jong-Min;Cho, Han-Wook;Han, Hyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.198-200
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator. Superconducting EDS system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity Especially, the levitation force is influenced by the structure of HTS magnet and ground conductor. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

  • PDF

Development of Ceramic Superconductor Bulk for Electric Energy resonance (초전도 화합물 세라믹 벌크 개발)

  • Lee, Sang-Heon;Choi, Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.42-43
    • /
    • 2008
  • The numerous application of ceramic superconducting bulk such as magnetic levitation train flywheel energy, levitation transpormation, magnetic bulk magnet etc. To obtain YBaCuO materials in the form of large single crystals are necessary. A refreshment and uniform distributon of the superconducting particle in the sample. The enhancement of the critical density was ascribe to a fine dispersion of the superconducting particle.

  • PDF

Study on the Optimal Design for HTS Magnetic Levitation Magnet (고온초전도 자기부상자석의 최적설계에 관한 연구)

  • Yoon, Kyung-Yong;Bae, Duck-Kweon;Cho, Heung-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.37-41
    • /
    • 2008
  • Superconducting Electrodynamic suspension(EDS) system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity. Especially, the levitation force is influenced by the structure of HTS magnet and ground magnet. This paper deals with the optimal design condition for the HTS levitation magnet. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF