• 제목/요약/키워드: sum of squares

검색결과 192건 처리시간 0.022초

사영에 의한 확률효과모형의 분석 (The analysis of random effects model by projections)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.31-39
    • /
    • 2015
  • 본 논문은 확률효과모형에서 사영에 근거한 분산성분을 구하는 방법을 다루고 있다. 분산성분을 추정하기 위한 ANOVA방법에서 제곱합의 계산에 사영을 이용하는 방법을 제시하고 있다. 분산성분을 구하기 위한 사영의 이용은 모형행렬에 의한 사영공간을 분산성분별 제곱합을 얻기 위한 상호직교하는 부분공간들로 분할하게 된다. 부분공간들로 분할하기 위해 모형행렬 X로의 사영에 단계별 방법(stepwise procedure)을 적용하여 해당하는 공간으로의 사영행렬을 구하는 방법을 다루고 있다. 단계별 방법에 의해 주어지는 부분공간들의 직교성으로 인해 사영행렬의 곱은 영행렬로 주어지는 성질을 갖는다. 단계별 방법에 의한 순차적 사영은 해당하는 공간으로의 사영행렬에 대한 확인과 사영행렬의 구조를 파악할 수 있는 이점이 있다. 또한 분산성분의 추정을 위한 제1종 제곱합을 구하기 위한 방법으로 유용하다.

A FITTING OF PARABOLAS WITH MINIMIZING THE ORTHOGONAL DISTANCE

  • Kim, Ik-Sung
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.669-684
    • /
    • 1999
  • We are interested in the problem of fitting a curve to a set of points in the plane in such a way that the sum of the squares of the orthogonal distances to given data points ins minimized. In[1] the prob-lem of fitting circles and ellipses was considered and numerically solved with general purpose methods. Especially in [2] H. Spath proposed a special purpose algorithm (Spath's ODF) for parabolas y-b=$c($\chi$-a)^2$ and for rotated ones. In this paper we present another parabola fitting algorithm which is slightly different from Spath's ODF. Our algorithm is mainly based on the steepest descent provedure with the view of en-suring the convergence of the corresponding quadratic function Q(u) to a local minimum. Numerical examples are given.

ORTHOGONAL DISTANCE FITTING OF ELLIPSES

  • Kim, Ik-Sung
    • 대한수학회논문집
    • /
    • 제17권1호
    • /
    • pp.121-142
    • /
    • 2002
  • We are interested in the curve fitting problems in such a way that the sum of the squares of the orthogonal distances to the given data points is minimized. Especially, the fitting an ellipse to the given data points is a problem that arises in many application areas, e.g. computer graphics, coordinate metrology, etc. In [1] the problem of fitting ellipses was considered and numerically solved with general purpose methods. In this paper we present another new ellipse fitting algorithm. Our algorithm if mainly based on the steepest descent procedure with the view of ensuring the convergence of the corresponding quadratic function Q(u) to a local minimum. Numerical examples are given.

통계계산에서의 갱신 알고리즘에 관한 연구 (Updating algorithms in statistical computations)

  • 전홍석
    • 응용통계연구
    • /
    • 제5권2호
    • /
    • pp.283-292
    • /
    • 1992
  • 개인용 컴퓨터의 보급이 급격히 늘어남에 따라 자료의 통계분석에 개인용 컴퓨터가 많이 이용되고 있다. 컴퓨터의 하드웨어가 하루가 다르게 발전하고 있음으로 웬만큼 많은 양의 자료를 분석하는 데에는 컴퓨터의 기억용량이나 처리속도등이 문제되지는 않는다. 자료가 축차적(sequentially)으로 주어질 때 어떤 통계량을 계산하기 위하여 매번 전체 자료를 다시 읽어야 한다면 이는 번거로운 작업이 될 것이며 기억용량의 낭비임에 틀림없다. 이러한 문제점을 S/W 적인 입장에서 해결하고자 하는 노력이 바로 갱신 알고리즘(Updating Algorithm)이다. 이 연구에서는 몇가지 통계량에 대한 갱신 알고리즘들을 알아보고 그들의 특성을 밝힘으로써 소형 및 개인용 컴퓨터를 이용하여서도 많은 양의 자료분석이 가능하도록 하고자 한다.

  • PDF

REMARKS OF CONGRUENT ARITHMETIC SUMS OF THETA FUNCTIONS DERIVED FROM DIVISOR FUNCTIONS

  • Kim, Aeran;Kim, Daeyeoul;Ikikardes, Nazli Yildiz
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.351-372
    • /
    • 2013
  • In this paper, we study a distinction the two generating functions : ${\varphi}^k(q)=\sum_{n=0}^{\infty}r_k(n)q^n$ and ${\varphi}^{*,k}(q)={\varphi}^k(q)-{\varphi}^k(q^2)$ ($k$ = 2, 4, 6, 8, 10, 12, 16), where $r_k(n)$ is the number of representations of $n$ as the sum of $k$ squares. We also obtain some congruences of representation numbers and divisor function.

EVERY POLYNOMIAL OVER A FIELD CONTAINING 𝔽16 IS A STRICT SUM OF FOUR CUBES AND ONE EXPRESSION A2 + A

  • Gallardo, Luis H.
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.941-947
    • /
    • 2009
  • Let q be a power of 16. Every polynomial $P\in\mathbb{F}_q$[t] is a strict sum $P=A^2+A+B^3+C^3+D^3+E^3$. The values of A,B,C,D,E are effectively obtained from the coefficients of P. The proof uses the new result that every polynomial $Q\in\mathbb{F}_q$[t], satisfying the necessary condition that the constant term Q(0) has zero trace, has a strict and effective representation as: $Q=F^2+F+tG^2$. This improves for such q's and such Q's a result of Gallardo, Rahavandrainy, and Vaserstein that requires three polynomials F,G,H for the strict representation $Q=F^2$+F+GH. Observe that the latter representation may be considered as an analogue in characteristic 2 of the strict representation of a polynomial Q by three squares in odd characteristic.

THE RELATION PROPERTY BETWEEN THE DIVISOR FUNCTION AND INFINITE PRODUCT SUMS

  • Kim, Aeran
    • 호남수학학술지
    • /
    • 제38권3호
    • /
    • pp.507-552
    • /
    • 2016
  • For a complex number q and a divisor function ${\sigma}_1(n)$ we define $$C(q):=q{\prod_{n=1}^{\infty}}(1-q^n)^{16}(1-q^{2n})^4,\\D(q):=q^2{\prod_{n=1}^{\infty}}(1-q^n)^8(1-q^{2n})^4(1-q^{4n})^8,\\L(q):=1-24{\sum_{n=1}^{\infty}}{\sigma}_1(n)q^n$$ moreover we obtain the number of representations of $n{\in}{\mathbb{N}}$ as sum of 24 squares, which are possible for us to deduce $L(q^4)C(q)$ and $L(q^4)D(q)$.

Generalization of Staggered Nested Designs for Precision Experiments

  • OJIMA Yoshikazu
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.253-258
    • /
    • 1998
  • Staggered nested designs are the most popular class of unbalanced nested designs in practical fields. The most important features of the staggered nested design are that it has a very simple open-ended structure and each sum of squares in the analysis of variance has almost the same degrees of freedom. Based on the features, a class of unbalanced nested designs which is generalized of the staggered nested design is proposed. Some of the generalized staggered nested designs are shown to be more efficient than the staggered nested design in estimating some of variance components and their linear combinations.

  • PDF

Numerical Investigations in Choosing the Number of Principal Components in Principal Component Regression - CASE II

  • Shin, Jae-Kyoung;Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.163-172
    • /
    • 1999
  • We propose a cross-validatory method for the choice of the number of principal components in principal component regression based on the magnitudes of correlations with y. There are two different manners in choosing principal components, one is the order of eigenvalues(Shin and Moon, 1997) and the other is that of correlations with y. We apply our method to various data sets and compare results of those two methods.

  • PDF

THE NUMBER OF REPRESENTATIONS BY A TERNARY SUM OF TRIANGULAR NUMBERS

  • Kim, Mingyu;Oh, Byeong-Kweon
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.67-80
    • /
    • 2019
  • For positive integers a, b, c, and an integer n, the number of integer solutions $(x,y,z){\in}{\mathbb{Z}}^3$ of $a{\frac{x(x-1)}{2}}+b{\frac{y(y-1)}{2}}+c{\frac{z(z-1)}{2}}=n$ is denoted by t(a, b, c; n). In this article, we prove some relations between t(a, b, c; n) and the numbers of representations of integers by some ternary quadratic forms. In particular, we prove various conjectures given by Z. H. Sun in [6].