참고문헌
-
A. Alaca, S. Alaca and K. S. Williams, Evaluation of the convolution sums
$\sum{_{l+12m=n}}{\sigma}(l){\sigma}(m)$ and$\sum{_{3l+4m=n}}{\sigma}(l){\sigma}(m)$ , Adv. Theor. and Appl. Math. 1 (2006), 27-48. -
S. Alaca and K. S. Williams, Evaluation of the convolution sums
$\sum{_{l+6m=n}}{\sigma}(l){\sigma}(m)$ and$\sum{_{2l+3m=n}}{\sigma}(l){\sigma}(m)$ , J. Number Theory, 124 (2007), 491-510. https://doi.org/10.1016/j.jnt.2006.10.004 - S. Alaca and K. S. Williams, The number of representations of a positive integer by certain octonary quadratic forms, Functiones et Approximatio 43.1 (2010), 45-54. https://doi.org/10.7169/facm/1285679145
- B. C. Berndt, Ramanujan's notebooks, Part II, Springer-Verlag, New York, 1989.
- N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisors functions, Yokohama Mathematical J., 52 (2005), 39-57.
- C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Borntrager, Regiomonti, 1829. (Gesammelte Werke, Erster Band, Chelsea Publishing Co., New York, 1969, pp. 49-239)
-
A. Kim, Evaluation of convolution sums as
$\sum{_{m=1}^{n-1}}\;m{\sigma}_i(m){\sigma}_j(n-m)$ , British Journal of Mathematics & Computer Science, 4(6), (2014), 858-885. https://doi.org/10.9734/BJMCS/2014/7421 - A. Kim, Evaluation of some convolution sums and sums of triangular numbers, Asian Journal of Mathematics and Computer Research, 9(2) (2016), 167-213.
-
A. Kim, The convolution sums
$\sum{_{m\lt\frac{n}{2}}}\;m{\sigma}_e(m){\sigma}_f(n-2m)$ , British Journal of Mathematics & Computer Science, 4(15), (2014), 2097-2122. https://doi.org/10.9734/BJMCS/2014/10037 -
A. Kim, The convolution sums
$\sum{_{m\lt\frac{n}{4}}}\;m{\sigma}_e(m){\sigma}_f(n-4m)$ , British Journal of Mathematics & Computer Science, 4(17), (2014), 2435-2470. https://doi.org/10.9734/BJMCS/2014/11166 -
A. Kim, The convolution sums
$\sum{_{m\lt\frac{n}{4}}}\;m{\sigma}_3(m){\sigma}_5(n-4m)$ and$\sum{_{m\lt\frac{n}{4}}}\;m{\sigma}_5(m){\sigma}_3(n-4m)$ , British Journal of Mathematics & Computer Science, 4(21), (2014), 3028-3053. https://doi.org/10.9734/BJMCS/2014/11474 - A. Kim, Number of representations of a positive integer by quaternary and octonary quadratic forms and the coefficients relation, Asian Journal of Mathematics and Computer Research, 11(1) (2016), 27-45.
- A. Kim, D. Kim, and N. Y. Ikikardes, Remarks of congruent arithmetic sums of theta functions derived from divisor functions, Honam Mathematical J., No.3, 35 (2013), 351-372. https://doi.org/10.5831/HMJ.2013.35.3.351
-
D. B. Lahiri, On Ramanujan's function
${\tau}(n)$ and the divisor function${\sigma}_k(n)$ , I, Bull. Calcutta Math. Soc., 38 (1946), 193-206. - S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc., 22 (1916), 159-184.