• 제목/요약/키워드: substrate temperature

검색결과 4,845건 처리시간 0.029초

Al 박막을 이용한 다결정 Si 박막의 제조에서 기판온도 영향 연구 (Effect of Substrate Temperature on Polycrystalline Silicon Film Deposited on Al Layer)

  • 안경민;강승모;안병태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.96.2-96.2
    • /
    • 2010
  • The surface morphology and structural properties of polycrystalline silicon (poly-Si) films made in-situ aluminum induced crystallization at various substrate temperature (300~600) was investigated. Silicon films were deposited by hot-wire chemical vapor deposition (HWCVD), as the catalytic or pyrolytic decomposition of precursor gases SiH4 occurs only on the surface of the heated wire. Aluminum films were deposited by DC magnetron sputtering at room temperature. continuous poly-Si films were achieved at low temperature. from cross-section TEM analyses, It was confirmed that poly-Si above $450^{\circ}C$ was successfully grown on and poly-Si films had (111) preferred orientation. As substrate temperature increases, Si(111)/Si(220) ratio was decreased. The electrical properties of poly-Si film were investigated by Hall effect measurement. Poly-Si film was p-type by Al and resistivity and hall effect mobility was affected by substrate temperature.

  • PDF

태양전지용 CdS 박막의 제조 조건에 따른 전기적 광학적 특성에 관한 연구 (A Study on the Electrical and Optical Properties of CdS Thin Films Deposited with Different Conditions for Solar Cell Applications)

  • 이재형
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.620-628
    • /
    • 2008
  • Cadmium sulphide (CdS) thin film, which is used as a window layer of heterojunction solar cell, on the glass substrate was deposited by vacuum evaporation. Effects of deposition conditions such as the source and substrate temperature on electrical and optical properties of CdS films was investigated. As the source temperature was increased, the deposition rate of CdS films was increased. In addition, the optical transmittance and the electrical resistivity of CdS films were decreased as the source temperature was increased. This results were attributed to the increase of excess Cd amount in the film. The crystal structure of CdS films exhibited the hexagonal phase with preferential orientation of the (002) plane. As the substrate temperature was increased, the crystal structure of CdS films was improved and the resistivity of the films was increased due to the decrease of excess Cd in film.

RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향 (Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method)

  • 오용철;김진사;조춘남;신철기;송민종;소병문;최운식;김충혁;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.718-721
    • /
    • 2004
  • The $(Sr_{0.9}Ca_{0.1})TiO_3$(SCT) thin films are deposited on Pt-coated electrode$(Pt/TiN/SiO_2/Si)$ using RF sputtering method at various substrate temperature. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of $100\sim500[^{\circ}C]$. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of $-80\sim+190[^{\circ}C]$. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

  • PDF

미소 수용 Cyclohexange 중에서 분말 Lipase에 의한 분자내 에스테르화반응 (Intramolecular Esterification by Lipase Powder in Microaqueous Cycohexane)

  • 이민규;감삼규
    • 생명과학회지
    • /
    • 제5권4호
    • /
    • pp.155-161
    • /
    • 1995
  • The effects of substrate concentration, enzyme concentration, reaction temperature, and water content were investigated in intramolecular esterification. This study used cyclohexane as organic solvent, power lipase as enzyme, and benzyl alcohol and octanoic acid as substrate. The initial reaction rate was found to be proportional to enzyme concentration; followed Michaelis-Menten equation for octanoic acid; and was inhibited by benzyl alcohol . The observed initial reaction rate first increased, then decreased with increasing reaction temperature, giving rise to the maximum rate at 20$\circ$. The drop in the reaction rate at higher temperature was to partition equilibrium change of substrate between organic solvent and hydration layer of enzyme molecule in addition to the deactivation by enzyme denaturation. Water layer surrounding enzyme molecule seemed to activate in organic solvent and the realistic reaction was done in the water layer. In the enzymatic reaction in organic solvent, the initial reaction rate was influenced by partition quilibrium of substrate, so the optimum condition of substrate concentration, enzyme concentration, reaction temperature, and water content would give a good design tool.

  • PDF

진공증착법으로 제조한 CdS 박막의 전기적 및 광학적 성징 (Electrical and Optical Propeties of CdS Films Prepared by Vacuum Evaporation)

  • 김동섭;임호빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1991년도 추계학술대회 논문집
    • /
    • pp.12-16
    • /
    • 1991
  • Cadmium sulphide films with thickness of 0.6∼1.2$\mu\textrm{m}$ were deposited onto corning 7059 glass substrate under a vacuum of 5${\times}$10$\^$-6/ Torr. Source and substrate temperature ranges used were 800∼1100$^{\circ}C$ and 100∼200$^{\circ}C$, respectively. The microstructures and semiconducting properties of the films were studied using X-ray diffraction, UV-VIS-IR spectrophotometer and Hall measurement unit. Electrical resistivity and optical transmission of the CdS films decrease with an increase in source temperature while they increase with an increase in substrate temperature. The resistivity of the film evaporated at 1100$^{\circ}C$ varied from 7${\times}$10$^3$ohm-cm at the substrate temperature of 100$^{\circ}C$ to 2${\times}$10$\_$6/ohm-cm at 190$^{\circ}C$. All the films had hexagonal structure and strong texture with c-axis of grains normal to the substrate glass.

플라즈마 증착 반응기에서 유체흐름과 상온에서 증착된 티타늄 산화막 특성 (Fluid Flow in Plasma Deposition Reactor and Characteristics of Titanium Oxide Films Deposited at Room Temperature)

  • 정일현
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.438-443
    • /
    • 2007
  • 본 연구에서는 티타늄 산화막을 상온에서 HCP (hollow cathode plasma) 반응기에 의하여 증착하였다. HCP 반응기에 대한 시뮬레이션 결과, 전극에서의 열 발생에 관계없이 기판 표면에서의 온도분포는 일정하였다. 그리고 전극과의 거리가 증가하면서 기판 표면에서의 유체는 일정한 것으로 나타났으며, 표면 조도는 거리에 따라 감소하였다. 출력이 증가할수록 산소의 조성은 증가하는 것으로 나타났으며, 출력이 240 watt와 반응 거리가 3 cm에서 Ti와 O의 비율이 1 : 2에 가깝게 결합이 이루어졌다.

박막 두께에 따른 (Ba,Sr)TiO$_3$박막의 구조 및 유전특성 (Microstructure and Dielectric Properties of (Ba,Sr)TiO$_3$ Thin Film with Thickness)

  • 이상철;임성수;정장호;이성갑;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 1999
  • The (Ba,Sr)TiO$_3$[BST] thin film were fabricated on the Pt/Ti/SiO$_2$/Si substrate by RF sputtering technique. The structural properties of the BST thin films were investigated with deposition time and substrate temperature by XRD. In the case of the BST thin films which has the deposition thin of 20 min, second phases and BST (111) peaks were increased with increasing the temperature of substrate. The capacitance of the BST thin film (deposition time of 20 min.) was decreased with the substrate temperature and was 1500pF with applied voltage of 1V.

  • PDF

기판 온도 변화에 따라 증착되어진 ZnO 박막의 특성과 유기 태양전지의 버퍼층으로의 응용 (Characteristics of ZnO Thin Films Deposited with the Variation of Substrate Temperature and the Application As Buffer Layer in Organic Solar Cell)

  • 박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제28권10호
    • /
    • pp.648-651
    • /
    • 2015
  • The characterizations of zinc oxide (ZnO) buffer layers grown by unbalanced magnetron (UBM) sputtering under various substrate temperatures for inverted organic solar cells (IOSCs) were investigated. UBM sputter grown ZnO films exhibited higher crystallinity with increasing the substrate temperature, resulting in uniform and large grain size. Also, the electrical properties of ZnO films are improved with increasing substrate temperature. In the results, the performance of IOSCs critically depended on the substrate temperature during the film growth because the crystalllinity of the ZnO film affect the carrier mobility of the ZnO film.

저온 열처리 과정에서 일어나는 (0001) α-Al2O3 기판 표면의 형상 변화 (Surface Morphological Evolution of (0001) α-Al2O3 Substrate During Low Temperature Annealing)

  • 이근형
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.859-863
    • /
    • 2010
  • Evolution of surface morphology of ${\alpha}-Al_2O_3$ substrate was investigated as a function of annealing temperature and time. Commercial (0001) ${\alpha}-Al_2O_3$ single crystal substrates were annealed in the range of $600-1000^{\circ}C$ in air. At $600^{\circ}C$, step-terrace structure started to be formed on the substrate. However, the surface roughness on the terrace was still considerable and a number of islands were observed on the step edges as well as the terraces. As the annealing temperature increased, the islands were absorbed into the step edges. Thus the terraces were smoother and the step edges were more straightened. Well-defined surface with a step height of 0.2 nm was formed above $900^{\circ}C$. On the other hand, when the substrate was annealed at a fixed temperature of $1000^{\circ}C$, the change of surface morphology was observed for the substrate annealed for 10 min. After the annealing for 30 min, the surface on which any islands could not survive was observed.

저온에서 증착한 CdSe막의 구조적 및 전기적 특성 (The Structural and Electrical Properties of CdSe Films Deposited at Low Temperature)

  • 박기철;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.776-781
    • /
    • 2010
  • CdSe films were deposited on glass substrates (CdSe/glass) by thermal evaporation. Substrate temperature was lowered by cooling substrate holder with liquid nitrogen. Substrate temperatures were $200^{\circ}C$, $0^{\circ}C$ and $-40^{\circ}C$. The crystallographic properties and surface morphologies of the CdSe/glass films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical and electrical properties of the films were investigated by dependence of energy gap, photosensitivity and resistivity on the substrate temperature. CdSe/glass showed energy gap of ~1.72 eV regardless of substrate temperature. The resistivity of the films decreased to $0.5{\Omega}cm$ by lowering the substrate temperature to $-40^{\circ}C$. The CdSe/glass films prepared at $0^{\circ}C$ showed the highest photosensitivity among the films in this study.