DOI QR코드

DOI QR Code

Characteristics of ZnO Thin Films Deposited with the Variation of Substrate Temperature and the Application As Buffer Layer in Organic Solar Cell

기판 온도 변화에 따라 증착되어진 ZnO 박막의 특성과 유기 태양전지의 버퍼층으로의 응용

  • Park, Yong Seob (Department of Photoelectronics, Chosun College of Science and Technology)
  • Received : 2015.08.22
  • Accepted : 2015.09.24
  • Published : 2015.10.01

Abstract

The characterizations of zinc oxide (ZnO) buffer layers grown by unbalanced magnetron (UBM) sputtering under various substrate temperatures for inverted organic solar cells (IOSCs) were investigated. UBM sputter grown ZnO films exhibited higher crystallinity with increasing the substrate temperature, resulting in uniform and large grain size. Also, the electrical properties of ZnO films are improved with increasing substrate temperature. In the results, the performance of IOSCs critically depended on the substrate temperature during the film growth because the crystalllinity of the ZnO film affect the carrier mobility of the ZnO film.

Keywords

References

  1. S. R. Forrest, MRS Bulletin, 30, 28 (2005). [DOI: http://dx.doi.org/10.1557/mrs2005.5]
  2. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Advanced Materials, 18, 789 (2006). [DOI: http://dx.doi.org/10.1002/adma.200501717]
  3. M. D. Irwin, D. B. Buchholz, A. W. Hains, R.P.H. Chang, and T. J. Marks, Proc. of the National Academy of Sciences, 105, 2783 (2008). [DOI: http://dx.doi.org/10.1073/pnas.0711990105]
  4. J. A. Koster, V. D. Mihailetchi, and P.W.M. Blom, Appl. Phys. Lett., 88, 093511 (2006). [DOI: http://dx.doi.org/10.1063/1.2181635]
  5. A. Dhanabalan, J.K.J. van Duren, P. A. van Hal, J.L.J. van Dongen, and R.A.J. Janssen, Adv. Funct. Mater., 11, 255 (2001). [DOI: http://dx.doi.org/10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I]
  6. R. Pacios, D.D.C. Bradley, J. Nelson, and C. J. Brabec, Synth. Met., 137, 1469 (2003). [DOI: http://dx.doi.org/10.1016/S0379-6779(02)01182-7]
  7. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006). [DOI: http://dx.doi.org/10.1063/1.2359579]
  8. F. C. Krebs and K. Norrman, Progress in Photovoltaics, 15, 697 (2007). [DOI: http://dx.doi.org/10.1002/pip.794]
  9. K. Norrman, S. A. Gevorgyan, and F. C. Krebs, Sol. Energ. Matater. Sol. Cells, 92, 686 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.01.005]
  10. H. W. Kim and N. H. Kim, Mater. Sci. Eng. B, 103, 297 (2003). [DOI: http://dx.doi.org/10.1016/S0921-5107(03)00281-2]
  11. V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, Thin Solid Films, 515, 8756 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.03.125]
  12. S. Flickyngerova, K. Shtereva, V. Stenova, D. Hasko, I. Novotny, V. Tvarozek, P. Sutta, and E. Varinsky, Appl. Surf. Sci., 254, 3643 (2008). [DOI: http://dx.doi.org/10.1016/j.apsusc.2007.10.105]
  13. J. H. Lee, B. Hong, and Y. S. Park, Thin Solid Films, 547, 3 (2013). [DOI: http://dx.doi.org/10.1016/j.tsf.2013.06.045]
  14. S. E. Parka and D. H. Kim, Sol. Energ. Matater. Sol. Cells, 93, 1020 (2009). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.11.033]
  15. M. Shimizu, T. Horii, T. Shiosaki, and A. Kawabata, Thin Solid Films, 96, 149 (1982). [DOI: http://dx.doi.org/10.1016/0040-6090(82)90613-7]