• 제목/요약/키워드: substrate flexibility

검색결과 125건 처리시간 0.097초

Direct surface forming: New polymer processing technology for large light guide of TFT-LCD module

  • Cho, Kwang-Hwan;Kyunghwan Yoon;Park, Sung-Jin;Park, Chul
    • Korea-Australia Rheology Journal
    • /
    • 제15권4호
    • /
    • pp.167-171
    • /
    • 2003
  • The backlight unit (BLU) is used as a light source of TFT liquid-crystalline-display (TFT-LCD) module. In this backlight unit, one of important components is the light guide, which is usually made of transparent polymers. Currently, the screen-printing method is mainly used for the light guide as a manufacturing process. However, it has limitation to the flexibility of three-dimensional optical design. In the present paper a new alternative manufacturing method for the light guide with low-cost is proposed. This manufacturing method is named as direct surface forming (DSF), which is very similar to the well-known hot embossing except for partial contact between mold and substrate. The results of this new manufacturing method are presented in terms of processing condition, dimensional accuracy, productivity, etc.

Surface Plasmon Resonance Effect of Ag Layer Inserted in a Highly Flexible Transparent IZTO/Ag/IZTO Multilayer Electrode for Flexible Organic Light Emitting Diodes

  • Park, Ho-Kyun;Jun, Nam-Ho;Choi, Kwang-Hyuk;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.601-604
    • /
    • 2008
  • We report on the Ag thickness effect on the electrical and optical properties of indium zinc tin oxide (IZTO)-Ag-IZTO multilayer electrode grown on a PET substrate and the surface plasmon effect of Ag layer on the optical properties of IZTO-Ag-IZTO electrode. Using an IZTO-Ag-IZTO multilayer with a total thickness below ~80 nm, we can obtain high-quality flexible electrode with very low sheet resistance, high transmittance, high work function and superior flexibility.

  • PDF

Enhanced LTPS Manufacturing Equipment employing Excimer Laser Crystallization

  • Herbst, Ludolf;Simon, Frank;Rebhan, Ulrich;Geuking, Thorsten;Klaft, Ingo;Fechner, Burkhard
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1123-1126
    • /
    • 2005
  • For creation of low temperature polycrystallinesilicon (LTPS) the line beam excimer laser annealing (ELA) is a well known and established technique in mass production. With introduction of Sequential Lateral Solidification (SLS) some aspects such as crystalline quality, throughput and flexibility regarding the substrate size could be improved, but for OLED manufacturing still further process development is necessary. This paper discusses line beam ELA and SLS techniques that might enable process engineers to make polycrystalline-silicon (poly-Si) films with a high degree of uniformity and quality as required for system on glass (SOG) and active matrix organic light emitting displays (AMOLED). Equipment requirements are discussed and compared to previous standards. SEM images of process examples are shown in order to demonstrate the viability.

  • PDF

플렉시블 무기EL 색변환 백색 발광 소자 제작 및 특성평가 (The Fabrication and Characteristics of White Emission using CCM on Flexible Substrate)

  • 김기령;안성일;금정훈;이흥렬;임태홍;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.911-915
    • /
    • 2008
  • EL (electro-luminescent) device as a light source has an advantage in embodying large area with great flexibility. On nickel foil as an electrode and backplane, we demonstrated a white EL flexible light source with blue phosphor layer combined with color change layer. A correlation between color change layer and color coordination was analyzed by Gaussian method, and then the color coordinate was controlled near to (0.33, 0.33) of pure white light.

High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics

  • 조정호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.69.3-69.3
    • /
    • 2012
  • A high-performance low-voltage graphene field-effect transistor (FED array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 and 91 $cm^2/Vs$, respectively, at a drain bias of - I V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.

  • PDF

방선균 시토크롬 P450와 전자전이시스템 (Streptomyces Cytochrome P450 and Electron Transport System)

  • 송재경;오태진
    • 한국미생물·생명공학회지
    • /
    • 제38권3호
    • /
    • pp.227-234
    • /
    • 2010
  • Cytochrome P450 enzymes which require the supply of electrons from NAD(P)H have a great biotechnological impact as they catalyze valuable reactions on a vast variety of substrates. However, very limited biotechnological application has been reported so far due to their functional complexity, limited stability (instability) and, in most cases, low catalytic activity. In this present review, we introduce some possibilities for improving their defect by exploring electron transport system and substrate flexibility in field of Streptomyces cytochrome P450.

PDMS Nanoslits without Roof Collapse

  • Lee, Jin-Yong;Yun, Young-Keu;Kim, Yoo-Ri;Jo, Kyu-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1793-1797
    • /
    • 2009
  • Soft lithography of polydimethyl-siloxane (PDMS), an elastomeric polymer, has enabled rapid and inexpensive fabrications of microfluidic devices for various biochemical and bioanalytical applications. However, fabrications of nanostructured PDMS components such as nanoslits remain extremely challenging because of deformation of PDMS material. One of the well-known issues is the unwanted contact between the surfaces of PDMS roof and bottom substrate, called ‘roof collapse’. Here we have developed a novel approach for the facile stabilization of PDMS nanoslits in the low height (130 nm)/width (100 $\mu$m) ratio without roof-collapse. Within 130 nm high nanoslits, we demonstrate the confinement of single DNA molecules. We believe that this approach will serve as a key to utilize PDMS as nanoslits for integrated microfluidic devices.

광에너지를 활용한 선택적 산화그래핀의 환원 (Selective Graphene Oxide Reduction Utilizing Photon Energy)

  • 신재수;최은미
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.16-20
    • /
    • 2018
  • Graphene is attracting attention due to its outstanding properties as line material for next-generation semiconductor. Graphene pattern technology is essential to apply graphene line. Selective graphene oxide reduction as one of graphene pattern method does not require a substrate thereby a high flexibility device can be applied. Particularly, the method using photon energy has advantages of short process time and environment friendly. In this review, we introduce the photocatalytic method and the photo-thermal energy conversion method using photon energy in the selective reduction process of graphene oxides.

이미드 곁가지로 가교되는 폴리설폰의 합성 및 필름 특성 (Synthesis and Film Properties of Cross-linked Polysulfone with Imide Side Chain)

  • 이은상;홍성권;김용석;이재흥;김인선;원종찬
    • 폴리머
    • /
    • 제30권2호
    • /
    • pp.140-145
    • /
    • 2006
  • 디스플레이용 기판으로 사용하고 있는 유리기판은 무겁고 깨지기 쉬우므로 이를 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌테레프탈레이트 환상형 올레핀 고분자 등의 플라스틱으로 대체하는 연구가 많이 이루어지고 있다. 플라스틱 기판은 가볍고, 내충격성이 뛰어나며, 유연하고 연속가공이 가능한 장점을 가지고 있다. 그러나 여러 유기용매에 녹는 특성을 가지고 있다. 디스플레이 제조 공정에서는 여러 유기용매에 노출되므로 이에 대한 내화학성이 필요하다. 그러므로 본 연구에서는 폴리설폰에 곁가지로 이미드 가교기를 도입하여 내화학성을 향상시키는 연구를 하였다. 곁사슬기에 의해 가교된 폴리설폰 필름은 용해도 조사 결과 내화학성이 향상되었음을 확인할 수 있었다. 내화학성 측정 결과 MeOH, THF, DMSO, NMP 등의 유기용매에 불용성을 보였다. 또한 15% 이상 낮은 열팽창계수를 보여 열에 대한 치수안정성이 개선되었으며 유리 전이 온도도 이미드기의 도입에 따라 $180^{\circ}C$ 에서 $252^{\circ}C$ 로 증가하였다. 이와 같이 제조한 이미드 곁가지로 가교된 폴리설폰은 광학적 특성이 우수하면서도 내화학성이 뛰어나 유연성 플라스틱 기판으로 사용이 가능하다.

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • 이우재;윤은영;권세훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF