DOI QR코드

DOI QR Code

PDMS Nanoslits without Roof Collapse

  • Lee, Jin-Yong (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Yun, Young-Keu (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Yoo-Ri (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Jo, Kyu-Bong (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2009.08.20

Abstract

Soft lithography of polydimethyl-siloxane (PDMS), an elastomeric polymer, has enabled rapid and inexpensive fabrications of microfluidic devices for various biochemical and bioanalytical applications. However, fabrications of nanostructured PDMS components such as nanoslits remain extremely challenging because of deformation of PDMS material. One of the well-known issues is the unwanted contact between the surfaces of PDMS roof and bottom substrate, called ‘roof collapse’. Here we have developed a novel approach for the facile stabilization of PDMS nanoslits in the low height (130 nm)/width (100 $\mu$m) ratio without roof-collapse. Within 130 nm high nanoslits, we demonstrate the confinement of single DNA molecules. We believe that this approach will serve as a key to utilize PDMS as nanoslits for integrated microfluidic devices.

Keywords

References

  1. Manz, A.; Miyahara, Y.; Miura, J.; Watanabe, Y.; Miyagi, H.; Sato, K. Sens. Act. B Chem. 1990, 1, 249 https://doi.org/10.1016/0925-4005(90)80210-Q
  2. Whitesides, G. M. Nature 2006, 442, 368 https://doi.org/10.1038/nature05058
  3. Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z. H.; Effenhauser, C. S.; Manz, A. Science 1993, 261, 895 https://doi.org/10.1126/science.261.5123.895
  4. Craighead, H. G. Science 2000, 290, 1532 https://doi.org/10.1126/science.290.5496.1532
  5. El-Ali, J.; Sorger, P. K.; Jensen, K. F. Nature 2006, 442, 403 https://doi.org/10.1038/nature05063
  6. Xia, Y. N.; Whitesides, G. M. Ann. Rev. Mat. Sci. 1998, 28, 153 https://doi.org/10.1146/annurev.matsci.28.1.153
  7. Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.; Ingber, D. E. Ann. Rev. Biomed. Eng. 2001, 3, 335 https://doi.org/10.1146/annurev.bioeng.3.1.335
  8. Jo, K.; Dhingra, D. M.; Odijk, T.; de Pablo, J. J.; Graham, M. D.; Runnheim, R.; Forrest, D.; Schwartz, D. C. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2673 https://doi.org/10.1073/pnas.0611151104
  9. Zhang, C.; Zhang, F.; van Kan, J. A.; van der Maarel, J. R. C. J. Chem. Phys. 2008, 128
  10. Cao, H.; Yu, Z. N.; Wang, J.; Tegenfeldt, J. O.; Austin, R. H.; Chen, E.; Wu, W.; Chou, S. Y. App. Phys. Lett. 2002, 81, 174 https://doi.org/10.1063/1.1489102
  11. Reisner, W.; Beech, J. P.; Larsen, N. B.; Flyvbjerg, H.; Kristensen, A.; Tegenfeldt, J. O. Phys. Rev. Lett. 2007, 99
  12. Tegenfeldt, J. O.; Prinz, C.; Cao, H.; Chou, S.; Reisner, W. W.; Riehn, R.; Wang, Y. M.; Cox, E. C.; Sturm, J. C.; Silberzan, P.; Austin, R. H. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 10979 https://doi.org/10.1073/pnas.0403849101
  13. Effenhauser, C. S.; Bruin, G. J. M.; Paulus, A.; Ehrat, M. Anal. Chem. 1997, 69, 3451 https://doi.org/10.1021/ac9703919
  14. Strychalski, E. A.; Levy, S. L.; Craighead, H. G. Macromolecules 2008, 41, 7716 https://doi.org/10.1021/ma801313w
  15. Hsieh, C. C.; Balducci, A.; Doyle, P. S. Nano Lett. 2008, 8, 1683 https://doi.org/10.1021/nl080605+
  16. Balducci, A. G.; Tang, J.; Doyle, P. S. Macromolecules 2008, 41, 9914 https://doi.org/10.1021/ma8015344
  17. Hui, C. Y.; Jagota, A.; Lin, Y. Y.; Kramer, E. J. Langmuir 2002, 18, 1394 https://doi.org/10.1021/la0113567
  18. Huang, Y. G. Y.; Zhou, W. X.; Hsia, K. J.; Menard, E.; Park, J. U.; Rogers, J. A.; Alleyne, A. G. Langmuir 2005, 21, 8058 https://doi.org/10.1021/la0502185
  19. Zhou, W.; Huang, Y.; Menard, E.; Aluru, N. R.; Rogers, J. A.; Alleyne, A. G. App. Phys. Lett. 2005, 87
  20. Decre, M. M. J.; Timmermans, P. H. M.; van der Sluis, O.; Schroeders, R. Langmuir 2005, 21, 7971 https://doi.org/10.1021/la050709p
  21. Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Anal Chem 1998, 70, 4974 https://doi.org/10.1021/ac980656z
  22. Dimalanta, E. T.; Lim, A.; Runnheim, R.; Lamers, C.; Churas, C.; Forrest, D. K.; de Pablo, J. J.; Graham, M. D.; Coppersmith, S. N.; Goldstein, S.; Schwartz, D. C. Anal. Chem. 2004, 76, 5293 https://doi.org/10.1021/ac0496401
  23. Sharp, K. G.; Blackman, G. S.; Glassmaker, N. J.; Jagota, A.; Hui, C. Y. Langmuir 2004, 20, 6430 https://doi.org/10.1021/la036332+
  24. Hsia, K. J.; Huang, Y.; Menard, E.; Park, J. U.; Zhou, W.; Rogers, J.; Fulton, J. M. App. Phys. Lett. 2005, 86, 154106 https://doi.org/10.1063/1.1900303

Cited by

  1. A new method of UV-patternable hydrophobization of micro- and nanofluidic networks vol.11, pp.24, 2011, https://doi.org/10.1039/c1lc20716d
  2. Beyond Gel Electrophoresis: Microfluidic Separations, Fluorescence Burst Analysis, and DNA Stretching vol.113, pp.4, 2013, https://doi.org/10.1021/cr3002142
  3. Functional Polymer Sheet Patterning Using Microfluidics vol.30, pp.28, 2014, https://doi.org/10.1021/la501723n
  4. Consideration of Nonuniformity in Elongation of Microstructures in a Mechanically Tunable Microfluidic Device for Size-Based Isolation of Microparticles vol.24, pp.2, 2015, https://doi.org/10.1109/JMEMS.2014.2378314
  5. A combined microfluidic-microstencil method for patterning biomolecules and cells vol.8, pp.5, 2014, https://doi.org/10.1063/1.4896231
  6. Roof-Collapsed PDMS Mask for Nanochannel Fabrication vol.32, pp.1, 2009, https://doi.org/10.5012/bkcs.2011.32.1.33
  7. Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process vol.22, pp.11, 2012, https://doi.org/10.1088/0960-1317/22/11/115008
  8. Soft electrostatic trapping in nanofluidics vol.3, pp.None, 2009, https://doi.org/10.1038/micronano.2017.51
  9. Design and Fabrication of Integrated Microchannel and Peristaltic Micropump System for Inertial Particle Separation vol.153, pp.None, 2009, https://doi.org/10.1051/matecconf/201815308002
  10. Editors' Choice—Development of Screen-Printed Flexible Multi-Level Microfluidic Devices with Integrated Conductive Nanocomposite Polymer Electrodes on Textiles vol.166, pp.9, 2009, https://doi.org/10.1149/2.0191909jes