• Title/Summary/Keyword: subgrain

Search Result 33, Processing Time 0.016 seconds

Subgrain boundaries in octachloropropane: deformation patterns, subgrain boundary orientation and density

  • Ree, Jin-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.20-33
    • /
    • 1994
  • Some of the seven types of subgrain boundaries (Means and Ree, 1988) in octachloropropane samples show distinctive deformation patterns during their development. Type II subgrain boundaries migrate to accommodate the deformation difference between adjacent grains. The formation of Type III requires a rigid-body roation of grains to reduce misorientation of adjacent grains. Type I, IV, V and VI develop either in static or dynamic condition. Type VII form only in static environments after deformation. Ribbon grains can develop via Type III or Type IV process. The orientation pattern and density of subgrain boundaries are more or less stable through a post-deformation heating. Subgrain boundary orientations are symmetric with respect to the grain-shape foliation in pure shear. In simple shear, their maximum inclines toward the direction of shear.

  • PDF

Mineral Separation and Sample Preparation Methods Efficient for Subgrain Zircon Analyses (저어콘 아입자분석을 위한 효율적인 광물분리 및 시료준비 방법)

  • 조등룡
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.126-132
    • /
    • 2004
  • This study provides detailed sample preparation methods for subgrain zircon analyses, and a simple mineral separation technique which overflows light mineral grains out of beaker using the running water from faucet. Excluding separation steps using of the Wilfley table and heavy liquid, this technique is faster and more efficient than conventional one, and remarkably suitable for collecting small amount of zircon for subgrain analyses.

Observation and Analysis of Dislocation Spacing in the Subgrain boundary on IN 617 (IN 617의 아결정립계의 전위간격 분석법에 관한 고찰)

  • An, Seong-Uk;Lee, Jong-Min
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.184-190
    • /
    • 1995
  • IN 617 was crept under stresses of 107 and 180 MPa with monotonic deformation to strains of $\varepsilon$= 0.03 - 0.30 at 1073K. In order to determine the distances between the subgrain boundaries, the deformed specimens were examined at magnifications of one hundred thousand times by TEM. In cases . where TEM observations were not possible, subgrain angles($\theta$_{s}=sin^{-1}$(b/s))were measured by Kikuchi diffraction lines. The $\theta$_{k}$ converted from s values measured directly by TEM agreed very well with those measured from Kikuchi lines. Therefore, it was found that the $\theta$_{k}$ values could be used in obtaining s, especially in cases where it is impossible to measure s by TEM.

  • PDF

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.262-262
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

  • PDF

Recrystallization Behavior of Cold-worked and $\beta$-Quenched Zr-Zn Alloys (냉간가공과 베타급냉된 Zr-Sn 합금의 재결절 거동)

  • Lee, Myeong-Ho;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.725-731
    • /
    • 2000
  • Recrystallization behaviors of cold-worked and $\beta$-quenched Zr-Zn alloys were investigated by the microhardness tests and microscopic examinations. The recrystallization of the $\beta$-quenched alloys was retarded in comparison with that of the cold-worked alloys, suggesting that the stored energy of the cold-worked alloys is larger than that of the $\beta$-quenched alloys. Although initial hardness for the cold-worked and the $\beta$-quenched specimens had an equal value, the recrystallization behaviors were observed to be quite different. Based on the transmission electron microscope(TEM) studies, it was suggested that the recrystallization of the cold-worked specimen would have occurred by subgrain coalescence while that of $\beta$-quenched specimen by strain-induced grain boundary migration.

  • PDF

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온 예변형에 의한 크리프 거동)

  • 박인덕;남기우;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strained specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steen which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

Changes of Lamellar Structure of TiAl Intermetallic Compound Heat Treatment (열처리에 따른 TiAl금속간화합물의 층상조직 변화)

  • Shin, Jae-Kwan;Chung, In-Sang;Park, Kyuong-Chae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.127-137
    • /
    • 1993
  • The changes of lamellar(${\alpha}_2+{\gamma}$) structure of TiAl intermetallic compound which is a high potential, high temperature aerospace material was investigated by heat treatment. The lamellar structure was short and made subgrain in prior a grains after homogenizing at 1523 K. It became longer and finer, and the subgrain went out during subsequent isothermal heatteating at 1273 K. The yield, fracture strength and strain to fracture if the heat treated specimens was increased and the hardness of them was decreased a little in the finer lamellar structure, because fine lamellar interface, sugrain boundary and grain boundary may block initiation and propagation of crack.

  • PDF

EFFECT OF HARDNESS CHANGES AND MICROSTRUCTURAL DEGRADATION ON CREEP BEHAVIOR OF A Mod.9Cr-1Mo STEEL

  • PARK K. S.;CHUNG H. S.;LEE K. J.;JUNG Y. G.;KANG C. Y.;ENDO T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Interrupted creep tests for investigating the structural degradation during creep were conducted for a Mod.9Cr-1Mo steel in the range of stress from 71 to 167 MPa and temperature from 873 to 923 K. The change of hardness and tempered martensitic lath width was measured in grip and gauge parts of interrupted creep specimens. The lath structure was thermally stable in static conditions. However, it was not stable during creep, and the structural change was enhanced by creep strain. The relation between the change in lath width and creep strain was described quantitatively. The change in Vickers hardness was expressed by a single valued function of creep LCR(life consumption ratio). Based on the empirical relation between strain and lath width, a model was proposed to describe the relation between change in hardness and creep LCR. The comparison of the model with the empirical relation suggests that about 65% of hardness loss is due to the decrease of dislocation density accompanied by the movement of lath boundaries. The role of precipitates on subboundaries was discussed in connection with the abnormal subgrain growth appearing in low stress regime.

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온예변형에 의한 크리프 거동)

  • Park, In-Duck;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strianed specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steel which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

  • PDF