Abstract
The changes of lamellar(${\alpha}_2+{\gamma}$) structure of TiAl intermetallic compound which is a high potential, high temperature aerospace material was investigated by heat treatment. The lamellar structure was short and made subgrain in prior a grains after homogenizing at 1523 K. It became longer and finer, and the subgrain went out during subsequent isothermal heatteating at 1273 K. The yield, fracture strength and strain to fracture if the heat treated specimens was increased and the hardness of them was decreased a little in the finer lamellar structure, because fine lamellar interface, sugrain boundary and grain boundary may block initiation and propagation of crack.