• 제목/요약/키워드: styrene polymerization

검색결과 254건 처리시간 0.023초

Dispersion Polymerization of Styrene Employing Lyophilic Comonomer in the Absence of Stabilizer: Synthesis of Impurity-free Microspheres

  • Han, Hye-Kyung;Lee, Jeong-Woo;Hong, Jin-Ho;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.469-475
    • /
    • 2009
  • We investigated the feasibility of dispersion polymerization without any stabilizer, which has been considered essential for ensuring colloidal stability. By employing small amounts of a lyophilic comonomer, 4-vinyl pyridine, styrene was successfully polymerized by dispersion polymerization in aqueous alcohol without stabilizer to afford stable poly(styrene-co-4-vinyl pyridine) copolymer microspheres. The stable microspheres were produced in the 4-vinyl pyridine range of 2-15 wt% to styrene. Without 4-vinyl pyridine, severely coagulated particles were obtained, implying that the poly(4-vinyl pyridine) moiety endowed colloidal stability. The polymerization kinetics, behavior, and properties of the ultimate particles showed general features of dispersion polymerization. The study results suggest that stabilizer- tree dispersion polymerization is possible, thereby facilitating the synthesis of impurity(stabilizer)-tree polymer particles.

Part 1 : Styrene과 COPS-I의 무유화공중합 (Part 1 : Soap-Free Emulsion Copolymerization of Styrene with COPS-I)

  • 이기창;추헌승;하정미
    • 접착 및 계면
    • /
    • 제15권3호
    • /
    • pp.93-99
    • /
    • 2014
  • 본 Styrene (ST)과 sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I)의 무유화 공중합을 다양한 중합조건(ST, COPS-I, KPS, DVB의 농도 및 중합온도)하에서 실시하여, 165~550 nm 입자경 범위의 단분산 라텍스를 제조하였다. 일반적으로 COPS-I와 KPS의 농도, 중합온도, DVB의 농도 등의 변화는 고분자 입자수(입자경), 중합속도, 분자량, 제타전위 등에 밀접한 영향을 미침을 발견하였다. 입자수의 증가는 중합속도와 제타전위를 증가시켰으나 분자량은 감소하였다.

Reversible Addition-Fragmentation Chain Transfer (RAFT) Bulk Polymerization of Styrene: Effect of R-Group Structures of Carboxyl Acid Group Functionalized RAFT Agents

  • Lee Jung Min;Kim Ok Hyung;Shim Sang Eun;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • 제13권3호
    • /
    • pp.236-242
    • /
    • 2005
  • Three dithioester-derived carboxyl acid functionalized RAFT(reversible addition-fragmentation chain transfer) agents, viz. acetic acid dithiobenzoate, butanoic acid dithiobenzoate and 4-toluic acid dithiobenzoate, were used in the RAFT bulk polymerization of styrene, in order to study the effects of the R-group structure on the living nature of the polymerization. By conducting the polymerization with various concentrations of the RAFT agents and at different temperatures, it was found that the R-group structure of the RAFT agents plays an important role in the RAFT polymerization; the bulky structure and radical stabilizing property of the R-group enhances the living nature of the polymerization and allows the polymerization characteristics to be well controlled.

New Tridentate Ligands with Mixed Donor Atoms for Cu-Based Atom Transfer Radical Polymerization

  • Cho, Hong-Youl;Han, Byung-Hui;Kim, Il;Paik, Hyun-Jong
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.539-544
    • /
    • 2006
  • 2-Furancarboxaldehyde-2-pyridinylhydrazone (FPH) and 5-methyl-2-furancarboxaldehyde-2-pyridinylhydrazone (MFPH) were synthesized and used as tridentate ligands of copper (I) bromide for the atom transfer radical polymerization of methyl methacrylate (MMA) and styrene. The polymerization of methyl methacrylate achieved high conversion and yielded polymers with a good control of molecular weight and low polydispersity (PDI=1.33). Higher PDI were observed in the polymerization of styrene. Using 1-phenyl ethylbromide (PEBr) and ethyl 2-bromoisobutyrate (EBiB) as model compounds for the polymeric chain ends, the activation rate constants of the new catalytic systems were measured. These results were correlated with the polymerization results and compared with another catalytic system previously reported.

Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구 (Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles)

  • 이경구;박근호
    • 한국응용과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

Graft 重合에 關한 硏究-紫外線 照射에 依한 Polyvinyl alcohol 과 Styrene 의 Graft 重合에 關하여 (Studies on the Graft Polymerization-Graft Polymerization of Styrene to Polyvinyl Alcohol by Ultraviolet Light)

  • 심정섭;전경철
    • 대한화학회지
    • /
    • 제6권1호
    • /
    • pp.64-68
    • /
    • 1962
  • The graft polymerization of styrene to polyvinyl alcohol using a photosensitizer(benzophenone) and ultraviolet light was studied. Styrene was grafted onto polyvinyl alcohol up to when polyvinyl alcohol was pre-immersed in water and irradiated by ultraviolet light for 24 hours styrene solution of benzophenone(0.01 molarity). The highest percentage of graft obtained in the grafting which was proceeded in the presence of water added immediately before irradiation was 29%. The grafting was proportional to irradiation time within a certain limit of time, i.e., 24 hours, and presumably was initiated at the surface. After a certain degree of grafting a definite maximum was reached. Graft polymer prepared in this experiment showed high resistance to various solvents.

  • PDF

계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성 (Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant)

  • 김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

Poly(methyl methacrylate-co-styrene)/Silicate Nanocomposites Synthesized by Multistep Emulsion Polymerization

  • Park, Yeong-Suk;Kim, Yoon-Kyung;Chung, In-Jae
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.418-424
    • /
    • 2003
  • Exfoliated poly(methyl methacrylate-co-styrene) [P(MMA-co-ST)]/silicate nanocomposites were synthesized through a multistep emulsion polymerization. The methyl methacrylate monomers were polymerized first and then the styrene monomers were polymerized. The nanocomposites had core-shell structures consisting of PMMA (core) and PS (shell); these structures were confirmed by $^1$H NMR spectroscopy and TEM, respectively. P(MMA-co-ST) copolymers showed two molecular weight profiles and two glass transition temperatures (T$_{g}$) in GPC and DMA measurements. At 30 $^{\circ}C$, the nanocomposites exhibited 83 and 91 % increases in their storage moduli relative to the neat copolymer because the silicate layers were dispersed uniformly in the polymer matrix.x.

스티렌 현탁 중합반응에서 폭주반응 해석 (Analysis of Runaway Reaction at Styrene Suspension Polymerization)

  • 박형일;신석주;이헌창;장서일;김태옥
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.81-89
    • /
    • 2002
  • The runaway reaction was analyzed experimently and theoretically at the batch styrene suspension polymerization process. In the experiments, the reaction temperature with time was measured at various experimental conditions. According to the experimental results, the risk of the runaway reaction was increased with increasing the ratio of the monomer(styrene, M) to the dispersion medium(water, W), the concentration of the initiator(BPO), and the monomer mass, respectively. And simulation results showed that the runaway reaction was significantly affected by the reaction rate constant of the propagation and that the phenomena of the runaway reaction occurred at about 70% conversion. Also, we found that the runaway reaction did not occur under the operating condition of below 0.5 for M/W, approximate 3 wt% BPO, and below 75$^{\circ}C$ for the cooling temperature.