Reversible Addition-Fragmentation Chain Transfer (RAFT) Bulk Polymerization of Styrene: Effect of R-Group Structures of Carboxyl Acid Group Functionalized RAFT Agents

  • Lee Jung Min (Department of Chemical Engineering, Inha University) ;
  • Kim Ok Hyung (Department of Chemical Engineering, Inha University) ;
  • Shim Sang Eun (Department of Chemical Engineering, Inha University) ;
  • Lee Byung H. (Department of Chemical Engineering, Inha University) ;
  • Choe Soonja (Department of Chemical Engineering, Inha University)
  • Published : 2005.06.01

Abstract

Three dithioester-derived carboxyl acid functionalized RAFT(reversible addition-fragmentation chain transfer) agents, viz. acetic acid dithiobenzoate, butanoic acid dithiobenzoate and 4-toluic acid dithiobenzoate, were used in the RAFT bulk polymerization of styrene, in order to study the effects of the R-group structure on the living nature of the polymerization. By conducting the polymerization with various concentrations of the RAFT agents and at different temperatures, it was found that the R-group structure of the RAFT agents plays an important role in the RAFT polymerization; the bulky structure and radical stabilizing property of the R-group enhances the living nature of the polymerization and allows the polymerization characteristics to be well controlled.

Keywords

References

  1. T. Otsu and M. Yoshida, Macromol. Rapid Commun., 3, 127 (1982) https://doi.org/10.1002/marc.1982.030030208
  2. K. Matyjaszewski and T. P. Davis, Eds., Handbook of Radical Polymerization, Wiley, Hoboken, 2002
  3. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, 26, 2987 (1993) https://doi.org/10.1021/ma00063a054
  4. D. H. Solomon, E. Rizzardo, and P. Cacioli, US 4581429 (1986)
  5. J. S. Wang, and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995) https://doi.org/10.1021/ja00125a035
  6. K. Matyjaszewski and J. S. Wang, Macromolecules, 8, 7901 (1995)
  7. M. Kato, M. Kamigato, M. Sawamoto, and T. Higashimura, Macromolecules, 28, 1721 (1995) https://doi.org/10.1021/ma00109a056
  8. W. Xu, X. Zhu, Z. Cheng, and J, Lu, Macromol. Res., 12, 32 (2004) https://doi.org/10.1007/BF03218992
  9. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G.. F. Meijs, C. L. Moad, G Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 31, 5559 (1998) https://doi.org/10.1021/ma9804951
  10. D. G. Hawthorne, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 32, 5457 (1999) https://doi.org/10.1021/ma990316v
  11. A.Goto, K. Sato,Y. Tsujii, T. Fukuda, G Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 34, 402 (2001) https://doi.org/10.1021/ma002404h
  12. B. Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 32, 2071 (1999) https://doi.org/10.1021/ma981472p
  13. R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G Moad, A. Postma, and S. H. Thang, Macromolecules, 33, 243 (2000) https://doi.org/10.1021/ma991451a
  14. S. Perrier, C. Barner-Kowollik, J. F Quinn, P. Vana, T. P. Davis, Macromolecules, 35, 8300 (2002) https://doi.org/10.1021/ma0203445
  15. C. Barner-Kowollik, J. F. Quinn, T. L. U. Nguyen, J. P. A. Heuts, and T. P. Davis, Macromolecules, 34, 7849 (2001) https://doi.org/10.1021/ma010349m
  16. M. Destarac, D. Charmot, X. Franck, and S. Z. Zard, Macromol. Rapid Commun., 21, 1036 (2000)
  17. R. Severac, P. Lacroix-Desmazes, and B. Boutevin, Polym. Int., 51, 1117 (2002) https://doi.org/10.1002/pi.932
  18. G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo, and S. H. Thang, Polym. Int., 49, 993 (2000) https://doi.org/10.1002/1097-0126(200009)49:9<993::AID-PI506>3.0.CO;2-6
  19. C. Barner-Kowollik, J. F. Quinn, D. R. Morseley, and T. P. Davis, J. Polym. Sci.; Part A Chem., 39, 1353 (2001) https://doi.org/10.1002/pola.1112
  20. M. S. Donovan, A. B. Lowe, B. S. Sumerlin, C. L. McCormik, Macromolecules, 34, 6561 (2001) https://doi.org/10.1021/ma002404h
  21. M. S. Donovan, A. B. Lowe, B. S. Sumerlin, and C. L. McCormick, Macromolecules, 35, 8300 (2002) https://doi.org/10.1021/ma011278u
  22. M. S. Donovan, T. A. Sanford, A. B. Lowe, B. S. Sumerlin, Y. Mitsukami, and C. L. McCornlik, Macromolecules, 35, 4570 (2002) https://doi.org/10.1021/ma011278u
  23. S. E. Shim, H. Lee, and S. Choe, Macromolecules, 37, 5565 (2004) https://doi.org/10.1021/ma049930j
  24. S. R. Ramadas and P. S. Srinivasan, J. Prakt. Chemie, 319, 169(1977) https://doi.org/10.1002/prac.19773190123
  25. S. E. Shim, Y. Shin, H. Lee, and S. Choe, Polym. Bull., 51, 209 (2003) https://doi.org/10.1007/s00289-003-0218-0
  26. S. E. Shim, H. Jung, H. Lee, J. Biswas, and S. Choe, Polymer, 44, 5563 (2003) https://doi.org/10.1016/S0032-3861(03)00632-3
  27. Y. K. Chong, J. Krstina, T. P. T. Le, G. Moad, A. Postma, E. Rizzardo, and S. H. Thang, Macromolecules, 36, 2256 (2003) https://doi.org/10.1021/ma020882h
  28. J. Chiefari, R. T. A. Mayadunne, C. L. Moad, G. Moad, E. Rizzardo, A. Postma, M. A. Skidmore, and S. H. Thang, Macromolecules, 36, 2273 (2003) https://doi.org/10.1021/ma020883+