Dispersion Polymerization of Styrene Employing Lyophilic Comonomer in the Absence of Stabilizer: Synthesis of Impurity-free Microspheres

  • Han, Hye-Kyung (Department of Chemical Engineering, Inha University) ;
  • Lee, Jeong-Woo (Department of Chemical Engineering, Inha University) ;
  • Hong, Jin-Ho (Department of Chemical Engineering, Inha University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
  • Published : 2009.07.25

Abstract

We investigated the feasibility of dispersion polymerization without any stabilizer, which has been considered essential for ensuring colloidal stability. By employing small amounts of a lyophilic comonomer, 4-vinyl pyridine, styrene was successfully polymerized by dispersion polymerization in aqueous alcohol without stabilizer to afford stable poly(styrene-co-4-vinyl pyridine) copolymer microspheres. The stable microspheres were produced in the 4-vinyl pyridine range of 2-15 wt% to styrene. Without 4-vinyl pyridine, severely coagulated particles were obtained, implying that the poly(4-vinyl pyridine) moiety endowed colloidal stability. The polymerization kinetics, behavior, and properties of the ultimate particles showed general features of dispersion polymerization. The study results suggest that stabilizer- tree dispersion polymerization is possible, thereby facilitating the synthesis of impurity(stabilizer)-tree polymer particles.

Keywords

References

  1. S. E. Shim, S. Yang, H. Jung, and S. Choe, Macromol. Res., 12, 233 (2004) https://doi.org/10.1007/BF03218393
  2. H. Fudouz and Y. Xia, Adv. Mater., 15, 892 (2003) https://doi.org/10.1002/adma.200304795
  3. J. Ugelstad, P. Stenstad, L. Kilaas, W. S. Prestvik, A. Rian, K. Nustad, R. Herje, and A. Berge, Macromol. Symp., 101, 491 (1996) https://doi.org/10.1002/masy.19961010155
  4. V. L. Covolan, L. H. I. Mei, and C. L. Mei, Polym. Adv. Technol., 8, 44 (1997) https://doi.org/10.1002/(SICI)1099-1581(199701)8:1<44::AID-PAT613>3.0.CO;2-1
  5. S. O. Cho, H. Y. Jun, and S. K. Ahn, Adv. Mater., 17, 120 (2005) https://doi.org/10.1002/adma.200400376
  6. J. Hong, C. K. Hong, and S. E. Shim, Colloid Surf. A, 302, 225 (2007) https://doi.org/10.1016/j.colsurfa.2007.02.027
  7. K. C. Lee and S. Y. Lee, Macromol. Res., 15, 255 (2007)
  8. K. C. Lee and S. Y. Lee, Macromol. Res., 16, 293 (2008) https://doi.org/10.1007/BF03218520
  9. J. Lee, J. U. Ha, S. Choe, C. Lee, and S. E. Shim, J. Colloid Interf. Sci., 298, 663 (2006) https://doi.org/10.1016/j.jcis.2006.01.001
  10. C. Xing and W. J. Yang, Polym. Sci. Part A: Polym. Chem., 43, 3760 (2005) https://doi.org/10.1002/pola.20871
  11. C. Xing, Y. Yu, and W. J. Yang, Macromol. Chem. Phys., 207, 621 (2006) https://doi.org/10.1002/macp.200500527
  12. S. Park, W. Sul, and Y. Chang, Macromolecules, 40, 3757 (2007) https://doi.org/10.1021/ma0700072
  13. J. M. Lee, B. H. Lee, and S. Choe, Polymer, 47, 3838 (2006) https://doi.org/10.1016/j.polymer.2006.03.033
  14. H. Dong, E. Fey, A. Gandelman, and W. E. Jones, Jr., Chem. Mater., 18, 2008 (2006) https://doi.org/10.1021/cm052436p
  15. P. L. Soo, S. N. Sidorov, J. Mui, L. M. Bronstein, H. Vali, A. Eisenberg, and D. Maysinger, Langmuir, 23, 4830 (2007) https://doi.org/10.1021/la063375s
  16. M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, Polymer, 49, 4529 (2008) https://doi.org/10.1016/j.polymer.2008.07.041
  17. K. S. Kim and B. Vincent, Polym. J., 37, 565 (2005) https://doi.org/10.1295/polymj.37.565
  18. W. T. Ford and P. D. Paul, Microsphere Microcap. Liposome., 4, 171 (2002)
  19. Q. Chen, X. Shen, and H. Gao, Colloid Surf. A, 275, 45 (2006) https://doi.org/10.1016/j.colsurfa.2005.09.016
  20. S. Pathak, M. T. Greci, R. C. Kwong, K. Mercado, G. K. S. Prakash, A. George, and M. E. Thompson, Chem. Mater., 12, 1985 (2000) https://doi.org/10.1021/cm0001556
  21. W. H. Li and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 37, 2899 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2899::AID-POLA23>3.0.CO;2-8
  22. J. S. Downey, G. McIsaac, R. S. Frank, and H. D. H. Stover, Macromolecules, 34, 4534 (2001) https://doi.org/10.1021/ma000386y
  23. W. H. Li and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 36, 1543 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
  24. S. E. Shim, S. Yang, H. H. Choi, and S. Choe, J. Polym. Sci. Part A: Polym. Chem., 42, 835 (2004) https://doi.org/10.1002/pola.11028
  25. S. E. Shim, S. Yang, M. J. Jin, Y. H. Chang, and S. Choe, Colloid Polym. Sci., 283, 41 (2004)
  26. S. E. Shim, S. Yang, and S. Choe, J. Polym. Sci. Polym. Chem., 42, 3967 (2004) https://doi.org/10.1002/pola.20188
  27. R. G. Gilbert, Emulsion Polymerization: A Mechanical Approach, Academic Press, London, 1995
  28. V. D. Mochel, Meeting of the Division of Rubber Chemistry, American Chemical Society, Montreal, Canada, 1967
  29. M. Alger, Polymr Science Dictionary, 2nd ed., Chapman & Hall, London, 1997
  30. A. J. Pains, W. Luymes, and J. McNulty, Macromolecules, 23, 3104 (1990) https://doi.org/10.1021/ma00214a012
  31. C. M. Tseng, Y. Y. Lu, and M. S. El-Aasser, J. Polym. Sci. Polym. Chem. Ed., 24, 2995 (1986) https://doi.org/10.1002/pola.1986.080241126
  32. S. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci. Polym. Chem. Ed., 31, 1393 (1993) https://doi.org/10.1002/pola.1993.080310606
  33. S. Kiatkamjornwong and C. Kongsupapsiri, Polym. Int., 49, 1395 (2000) https://doi.org/10.1002/1097-0126(200011)49:11<1395::AID-PI510>3.0.CO;2-D