Preparation and Cytotoxicity Comparison of Type A Gelatin Nanoparticles with Recombinant Human Gelatin Nanoparticles

  • Won, Young-Wook (Department of Bioengineering, Information and Communication Building, Hanyang University) ;
  • Kim, Yong-Hee (Department of Bioengineering, Information and Communication Building, Hanyang University)
  • Published : 2009.07.25

Abstract

Gelatin nanoparticles derived from bovine or porcine have been developed as various types of drug delivery system, and they need to be cross-linked to maintain their physicochemical properties in aqueous environments. Although gelatin is a widely used material in pharmaceutical industries, the safety issue of animal-origin gelatins, such as transmissible mad cow disease and anaphylaxis, remains to be solved. The purpose of this study was to prepare type A gelatin (GA) nanoparticles by modified, two-step, desolvation method and compare the toxicity of the resulting GA nanoparticles with recombinant human gelatin (rHG) nanoparticles. The GA nanoparticles were characterized, and drug loading and release pattern were measured. FITC-BSA, a model protein, was efficiently loaded in the nanoparticles and then released in a biphasic and sustained release pattern without an initial burst. In particular, the cell viability of the GA nanoparticles was less than that of the rHG nanoparticles. This finding suggests that rHG nanoparticles should be considered as an alternative to animal-origin gelatin nanoparticles in order to minimize the safety problems.

Keywords

References

  1. J. K. Vasir, M. K. Reddy, and V. D. Labhasetwar, Curr. Nanosci., 1, 47 (2005) https://doi.org/10.2174/1573413052953110
  2. J. S. Park and Y. W. Cho, Macromol. Res., 15, 513 (2007) https://doi.org/10.1007/BF03218824
  3. K. Zwiorek, J. Kloeckner, E. Wagner, and C. Coester, J. Pharm. Pharm. Sci., 7, 22 (2005)
  4. J. J. Marty, R. C. Oppenheim, and P. Speiser, Pharm. Acta Helv., 53, 17 (1978)
  5. C. A. Farrugia and M. J. Groves, J. Pharm. Pharmacol., 51, 643 (1999) https://doi.org/10.1211/0022357991772925
  6. S. Azarmi, Y. Huang, H. Chen, S. McQuarrie, D. Abrams, W. Roa, W. H. Finlay, G. G. Miller, and R. Lobenberg, J. Pharm. Pharmaceut. Sci., 9, 124 (2006)
  7. J. S. Lee, J. K. Kim, S. R. Park, and Y. H. Chang, Macromol. Res., 15, 205 (2007) https://doi.org/10.1007/BF03218776
  8. http://www.fibrogen.com/programs/fg-5009/
  9. S. Young, M. Wong, Y. Tabata, and A. G. Mikos, J. Control. Release, 109, 256 (2005) https://doi.org/10.1016/j.jconrel.2005.09.023
  10. H. C. Liang, W. H. Chang, K. J. Lin, and H. W. Sung, J. Biomed. Mater. Res., 65A, 271 (2003) https://doi.org/10.1002/jbm.a.10476
  11. H. W. Sung, D. M. Huang, W. H. Chang, R. N. Huang, and J. C. Hsu, J. Biomed. Mater. Res., 46, 520 (1999) https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9
  12. Y. W. Won and Y. H. Kim, J. Control. Release, 127, 154 (2008) https://doi.org/10.1016/j.jconrel.2008.01.010
  13. C. Weber, C. Coester, J. Kreuter, and K. Langer, Int. J. Pharm., 194, 91 (2000) https://doi.org/10.1016/S0378-5173(99)00370-1
  14. N. Dinauer, S. Balthasat, C. Weber, J. Kreuter, K. Langer, and H. von Briesen, Biomaterials, 26, 5898 (2005) https://doi.org/10.1016/j.biomaterials.2005.02.038
  15. Y. M. Jeon, T. H. Lim, S. H. Kim, J. G. Kim, and M. S. Gong, Macromol. Res., 15, 17 (2007) https://doi.org/10.1007/BF03218747
  16. C. S. Brazel and N. A. Peppas, Eur. J. Pharm. Biopharm., 49, 47 (2000) https://doi.org/10.1016/S0939-6411(99)00058-2
  17. A. K. Bajpai and J. Choubey, J. Appl. Polym. Sci., 101, 2320 (2006) https://doi.org/10.1002/app.23761
  18. Y. Tabata and Y. Ikada, Adv. Drug. Deliver. Rev., 31, 287 (1998) https://doi.org/10.1016/S0169-409X(97)00125-7