• Title/Summary/Keyword: structural material.

Search Result 6,441, Processing Time 0.033 seconds

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Lopez-Morelos, Victor H.;Kim, Jin-Yeon;Gonzalez-Sanchez, Jorge;Medina-Flores, Ariosto
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2982-2989
    • /
    • 2021
  • One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.

A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer (FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구)

  • Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB (OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가)

  • Kim, Yongmin;Lee, Byungjoon;Yoon, Seongsoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure (3층 전단벽 구조물의 지진응답에 관한 수치해석)

  • Park, Dawon;Choi, Youngjun;Hong, Jung-Wuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.

Mechanical Properties Analysis of Epoxy and Polyurethane Adhesive for Accurate Structural Analysis of LNG Cargo Hold (LNG 화물창 정밀 구조해석을 위한 에폭시와 폴리우레탄 접착제 기계적 물성치 분석)

  • Jeong, Yong-Cheol;Jeong, Yeon-Jae;Kim, Jeong-Dae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.66-72
    • /
    • 2021
  • As the demand for natural gas that satisfies environmental regulations increases, the quantities of natural gas cargo that carrier can load is also increasing. Natural gas is transported in a liquefied state at -163 ℃ to increase loading efficiency. Among several LNG CCS types, MARK-III types are generally adopted in terms of loading efficiency. The secondary barrier adhesives of the MARK-III, nevertheless, is subjected to tensile stress due to thermal contraction and tension in the environment. In terms of these reasons, local analysis of the adhesive to evaluate the stress state must be carried out. According to previous studies, local analysis is unavailable since material properties for secondary barrier adhesives have not been reported. Thus, in this study, the cryogenic tensile test and coefficient of thermal expansion of epoxy and polyurethane (PU15, PU45), which are most widely used at cryogenic temperatures, were experimentally analyzed. At cryogenic temperature, the mechanical behavior of the polyurethane adhesive was better than epoxy of the adhesive. the joint of FSB and epoxy adhesive of the secondary barrier has the maximum coefficient of thermal expansion difference at 25 ℃ and minimum at -150 ℃, respectively.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석)

  • Park, Chul-Woo;Lee, Onsoo;Shin, Hyo-Sub;Park, Jin-Yong;Lee, Dong-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications (헥사메틸렌테트라민 농도에 따른 수산화니켈 입자의 특성 분석 및 의사커패시터 응용)

  • Kim, Dong Yeon;Jeong, Young-Min;Baek, Seong-Ho;Son, Injoon
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.231-236
    • /
    • 2019
  • Ni hydroxides ($Ni(OH)_2$) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the $Ni(OH)_2$ structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based $OH^-$ in the solution; thus, the growth rate and morphological structure of $Ni(OH)_2$ are influenced by HMT concentration. When $Ni(OH)_2$ is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, $Ni(OH)_2$ is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed $Ni(OH)_2$ grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the $Ni(OH)_2$ electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.

Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle columns

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.601-615
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, wall frames and columns, the use of back-to-back built-up CFS angle sections are becoming increasingly popular. In such an arrangement, intermediate fasteners are required at discrete points along the length, preventing the angle-sections from buckling independently. Limited research is available in the literature on the axial strength of back-to-back built-up CFS angle sections. The issue is addressed herein. This paper presents the results of 16 experimental tests, conducted on back-to-back built-up CFS screw fastened angle sections under axial compression. A nonlinear finite element model is then described, which includes material non-linearity, geometric imperfections and explicit modelling of the intermediate fasteners. The finite element model was validated against the experimental test results. The validated finite element model was then used for the purpose of a parametric study comprising 66 models. The effect of fastener spacing on axial strength was investigated. Four different cross-sections and two different thicknesses were analyzed in the parametric study, varying the slenderness ratio of the built-up columns from 20 to 120. Axial strengths obtained from the experimental tests and finite element analysis were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparison showed that the DSM is over-conservative by 13% on average. This paper has therefore proposed improved design rules for the DSM and verified their accuracy against the finite element and test results of back-to-back built-up CFS angle sections under axial compression.

A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process (매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구)

  • Son, Eun Nam;Baek, Seung Hun;Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigated the feasibility of $CaSnO_3$ particles as an oxygen carrier in chemical looping combustion (CLC). $CaSnO_3$ particles had a perovskite crystal structure and showed the structural stability after repeated reduction-oxidation reactions. The oxygen transfer capacity was 15.4 wt% almost the same as the calculated theoretical value from the crystal structure transformation during reduction. After $10^{th}$ cycles of reduction and oxidation, the oxygen transfer capacity and rate were still maintained constantly at an operating temperature. In conclusion, $CaSnO_3$ particles could be a good alternative material as an oxygen carrier in CLC.