• Title/Summary/Keyword: structural material.

Search Result 6,484, Processing Time 0.938 seconds

Strength Characteristics of Geo-polymer Grout (지오폴리머계 그라우트재의 강도 특성)

  • Lee, Jonghwi;Kim, Seonju;Cha, Kyungsub;Kim, Sunkon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • In this study, strength and durability of a geo-polymer grout material(HIT) was investigated through unconfined compression strength tests(UCS)), scanning electron microscope(SEM), elution tests, and surface observations. UCS tests showed high initial strength and rapid continuous strength increments when compared to labile wasser glass(LW) and space grouting rocket system (SGR) grout materials, which showed strength reduction after 28 days. The higher strength was also reflected in SEM results which showed calcium silicate hydroxide(C-S-H) gels of the dense hydrate range, indicating higher strength and durability. Additionally, elution tests and grout surface observations showed HIT was in good condition and the decrease in weight was minor when under water for six months. LW and SGR showed the grout surface to be constricted and lower durability due to higher weight increase. These results and observations show HIT to be better suited for coastal structural applications than LW and SGR in long terms of strength and durability.

A Study on Thermal Analysis with Strength Characteristics of HPC Column with Fiber Cocktail in KS Fire Curve (표준화재조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 전열특성에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.397-400
    • /
    • 2008
  • To carry out this study efficiently, the material, physical and mechanical properties of the existing high temperature area was identified and the thermal transportation of structural elements was carried out through the finite element analysis method(ABAQUS) for 40 to 100 MPa high strength concrete based on Fiber Cocktail mixing. The results are as follows. First, it was analyzed that 40, 50 and 60 MPa high strength concretes have a thermal transportation properties similar to the analysis model of 30 MPa normal concrete. Second, it was analyzed that the analysis model of 80 and 100 MPa high strength concrete have slightly lower thermal transportation properties compared to normal model. Third, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance-based design of fire-resistant construction.

  • PDF

Adjustment of Creep Coefficient Using Sensitivity Analysis (민감도 해석을 통한 크리프 계수 오차 보정)

  • Park, Jong-Bum;Park, Bong-Sik;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.293-296
    • /
    • 2008
  • Creep and shrinkage in concrete structures are very complex phenomena in which various uncertainties exist with regard to inherent material variations as well as modeling uncertainties. The creep and shrinkage models which are capable of predicting long-term structural response are specified in design codes such as ACI 209-92, CEB-FIP Model Code 90, etc. However, in the prediction formulas of creep and shrinkage effects of concrete, various kinds of parameters are involved to express the characteristics of concrete under consideration (i.e. the proportion of concrete, the shape of the structure, relative humidity, etc.). And the predicted values from each design code under same environment differ from each other. To predict the characteristics of concrete, the long-term experiments of creep and shrinkage is necessary but this is not suitable for a construction field. In this study, adjustment method of creep coefficient using sensitivity analysis is proposed to predict creep coefficient of concrete exactly and it is checked up on the validity of the predicting method by comparing to the assumed value and predicted one.

  • PDF

Materials and Methods in Usonian Automatic House System of Frank Lloyd Wright (라이트의 유소니언 오토매틱 주택 시스템에 나타난 재료 및 공법에 관한 연구)

  • Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • This study is to investigate the meaning and value of Usonian Automatic House System(UAHS) of Frank Lloyd Wright in his later period, focused on materials, methods, and his thoughts. The results of this study are follows. UAHS was the outcome of moderate cost and prefab house which Wright had successively attempted after the early Prairie period. The construction was simple and comparatively cheap, but subsequent automatics were difficult and expensive to build. Nevertheless, it was sufficiently flexible to support a rather wide range of house designs. Concrete was the inert mass and a plastic material. Wright saw a kind of weaving coming out of it. He also saw a kind of concrete masonry, steel for warp and masonry units for woof in the automatic concrete block. The reinforced bars in hollowed joints of concrete block increased the safety factor and affected the expression of the construction through the stabilization they provided. But they did not give concrete block the capability of structural span. Standardization as the soul of the machine might be seen in UAHS. The concrete blocks were more cheap, lighter, and larger hollowed plain than textile blocks in 1920s. But the variety of pattern and different block types in the UAHS were achieved at some sacrifice of standardization. The repetitive nature of production was compromised for artistic goals. The sense of compromise was not maximized, however, because the units as installed looked far more repetitive than they actually were.

A Study on the typological characters and the expressive modalities of the architecture of 'the natural construction' of Frei Otto (프라이 오토의 '자연적 구조' 건축의 유형적 특성과 표현양태에 관한 연구)

  • Lee, Ran-Pyo
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.68-76
    • /
    • 2006
  • Founding himself on 'The Principle of Self-making' that is the instrument of 'the natural construction' and accomplishing the various interdisciplinary researches, Frei Otto could explicate the fundamental structure of life that is able to make visible the self-making processes in the nature, the technique and the architecture. It is the flexible pneumatic construction that is grounded on the fibrous organization. This was a milestone not only for him who wanted to put the idea of the new architectural form into practice, but also for the contemporary architecture that faces on the style-pluralistic disorientedness. The architectural form of the natural construction includes in itself three constitutional sub-ideas. One of them is 'the adaptable architecture', which is inclined to the architecture similar to the organization of human body, and the other 'the light architecture' that is in the pursuit of the optimal form through the minimal material. The last one is 'the ecological architecture' that aims to realize the optimal dwelling environment based on the effective energy consumption by accumulating knowledges of the always fluid and unstable nature. With these architectural ideas Frei Otto could develop a new architectural form language 'the light architecture of the natural construction'. This study is purposed to explain the various experiments that were made by his team and the basic principles of the structural dynamics of 'the architecture of the natural construction' and then to analyze the structures that were built on the ground of those principles.

Prediction of Output Power for PV Module with Tilted Angle and Structural Design (태양광 모듈의 구조디자인과 설치각도에 따른 출력예측)

  • Ko, Jae-Woo;Yun, Na-Ri;Min, Yong-Ki;Jung, Tae-Hee;Won, Chang-Sub;Ahn, Hyung-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.371-375
    • /
    • 2013
  • A new model about output power prediction of PV module with various tilted angles and cell to cell distances has been proposed in this paper. Light intensity arrived on a solar cell could be changed by characteristics of PV module materials. Refractive indices, thickness and absorption coefficients of glass, EVA, solar cell and Backsheet are used to predict output. Also, the incident angle of light is changed 0 to 90[$^{\circ}$] and cell to cell distances are 5, 10 15[mm]. Two types of light incident on a solar cell are considered which are direct to a solar cell and reflected from Backsheet. The intensity of the incident light directly into the solar cell is reduced through glass and EVA about 17.5[%] in theoretical way. It has an error of 2.26[%] compared with experimental result. The results for compare theoretical with experimental data is validated within the error of 6.3[%]. This paper would be a research material to predict output power when the PV module is installed outdoor or a building.

Effect of Ambient Gases on the Characteristics of ITO Thin Films for OLEDs

  • Lee, Yu-Lim;Lee, Kyu-Mann
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.203-207
    • /
    • 2009
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of ITO thin films intended for use as anode contacts in OLED (organic light emitting diodes) devices. These ITO thin films are deposited by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar+$O_2$, and Ar+$H_2$) at $300{^{\circ}C}$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.5 sccm to 5 sccm and from 0.01 sccm to 0.25 sccm, respectively. The intensity of the (400) peak in the ITO thin films increased with increasing $O_2$, flow rate whilst the (400) peak was nearly invisible in an atmosphere of Ar+$H_2$. The electrical resistivity of the ITO thin films increased with increasing $O_2$ flow rate, whereas the electrical resistivity decreased sharply under an Ar+$H_2$ atmosphere and was nearly similar regardless of the $H_2$ flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed an average transmittance of over 80% in the visible range. The OLED device was fabricated with different ITO substrates made with the configuration of ITO/$\alpha$-NPD/DPVB/$Alq_3$/LiF/Al in order to elucidate the performance of the ITO substrate. Current density and luminance of OLED devices with ITO thin films deposited in Ar+$H_2$ ambient gas is the highest among all the ITO thin films.

An Experimental Study on the Durability of High-Ductile Mortar (고인성 모르타르의 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Ju-Sang;Hwang, Nam-Soon;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.71-74
    • /
    • 2007
  • With the changes of times the building materials tend to extend the demand for application under the special environment. Since high-ductile mortar is developed, the building materials show excellent performance like toughness, compression, tensile, and bending, etc. in the general concrete from the existing brittle point. And, recently they are widely used as repairing and reinforcing materials both at home and abroad because they are recognized as excellence like durability and fire-resistance. However, it is in a situation of creating problems in durability because it frequently happened deterioration of buildings that have already repaired and reinforced at a time when it requires reconstruction of recently deteriorated construction structure recently. Therefore, in this study improved with a more repair Material development and reinforcement of the second high-ductile mortar products for a variety of basic materials were presented want, research plans used include traditional repair materials and the newly developed PCM (polymer cement mortar) structural reinforcement type indicated that comparison. PCM analysis in order to present a rate depending on the types fiber 0, 1.2 and 2.0(%) at three levels and mixture water according to ratios of weight to Plain in the 2.0 and 1.85(kg) at two levels is set, the results were as follows. 1) This study has shown that PCM had excellent strain hardening behavior at the same time that the bending stress increased according to the fiber contents. 2) This study has shown that it had the durability performance due to the high substance transmission according to the fiber contents.

  • PDF

Preparation of Silica/collagen Microsphere Composit Doped with Silver Nanoparticles (은 나노입자를 담지한 collagen/silica microsphere 복합체의 제조)

  • Jung, Hyo Jung;Kim, Yeon Bum;Chang, Yoon Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.722-726
    • /
    • 2008
  • Silica microsphere is a world leading innovative material used in adsorbent packing materials in HPLC technology. The application of microsphere lies in the ability to the surface modification of silica with the special materials such as polymers, metals and bio-active materials. Collagen is a major structural protein of connective tissues and has a good biocompatibility. In this study, we prepared the purified silica porous microsphere, having micro diameters in the range of a pore volume at least 50% by the aggregation procedure of colloidal silica with the polymerization method (PICA). The microspheres were modified by collagen hydrogel to improve the biocompatible properties for biomedical product. The silica/collagen microsphere composite doped with silver nanoparticles was prepared and investigated the capabilities of biomaterial application through the evaluation of the structure characteristics of the microsphere composit.

Graphene/Multi-Walled Carbon Nanotubes Hybrid Materials for Supercapacitors

  • Lee, Bo-Reum;Chang, Dong Wook
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2015
  • We have developed a versatile method for the preparation of chemically linked graphene/multi-walled carbon nanotubes (MWNTs) hybrid materials via simple acid-catalyzed dehydration reaction between graphene oxide (GO) and amine-functionalized MWNTs (af-MWNTs). In this condition, ketone (-C=O) groups in GO and primary amine (-NH2) moieties in af-MWNTs readily react to form imine (-C=N-) linkage. The chemical structures of graphene/MWNTs hybrid materials have been investigated using various microscopic and spectroscopic measurements. As a result of the synergetic effects of hybrid materials such as improved surface area and the superior structural restoration of graphitic networks, the hybrid materials demonstrate improved capacitance with excellent long-term stability. Furthermore, controlled experiments were conducted to optimize the weight ratio of graphene/MWNTs in hybrid materials. The highest capacitance of 132.4 F/g was obtained from the GM7.5 material, in which the weight ratio between graphene and MWNTs was adjusted to 7.5/1, in 1M KOH electrolyte at a scan rate of 100 mV/s.