• Title/Summary/Keyword: structural instability

Search Result 445, Processing Time 0.022 seconds

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Fluid-elastic Instability Evaluation of Steam Generator Tubes

  • Cho, Young Ki;Park, Jai Hak
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • It has been reported that the plugged steam generator tube of Three Mile Island Unit 1 in America was damaged by growing flaw and then this steam generator tube destroyed the nearby steam generator tubes of normal state. On this account, stabilizer installation is necessary to prevent secondary damage of the steam generator tubes. The flow-induced vibration is one of the major causes of the fluid-elastic instability. To guarantee the structural integrity of steam generator tubes, the flow-induced vibration caused by the fluid-elastic instability is necessary to be suppressed. In this paper, the effective velocity and the critical velocity are calculated to evaluate the fluid-elastic instability. In addition, stability ratio value of the steam generator tubes is evaluated in order to propose one criterion when to determine stabilizer installation.

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

Structural Change Analysis in a Real Interest Rate Model (실질금리 결정모형에서의 구조변화분석)

  • 전덕빈;박대근
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.119-133
    • /
    • 2001
  • It is important to find the equilibrium level of real interest rate for it affects real and financial sector of economy. However, it is difficult to find the equilibrium level because like the most macroeconomic model the real interest model has parameter instability problem caused by structural change and it is supported by various theories and definitions. Hence, in order to cover these problems structural change detection model of real interest rate is developed to combine the real interest rate equilibrium model and the procedure to detect structural change points. 3 equations are established to find various effects of other interest-related macroeconomic variables and from each equation, structural changes are found. Those structural change points are consistent with common expectation. Oil Crisis (December, 1987), the starting point of Economic Stabilization Policy (January, 1982), the starting point of capital liberalization (January, 1988), the starting and finishing points of Interest deregulation (January, 1992 and December, 1994), Foreign Exchange Crisis (December, 1977) are detected as important points. From the equation of fisher and real effects, real interest rate level is estimated as 4.09% (October, 1988) and dependent on the underlying model, it is estimated as 0%∼13.56% (October, 1988), so it varies so much. It is expected that this result is connected to the large scale simultaneous equations to detect the parameter instability in real time, so induces the flexible economic policies.

  • PDF

Effects by Bracing Reinforcement on Bifurcation of Cable Domes (케이블 돔 구조물의 분기좌굴에 대한 브레이싱 보강 효과)

  • 김민정;백인성;김형석;김승덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.167-174
    • /
    • 2001
  • A shape resistant shell structure is an extremely efficient mechanical creation because it transmits forces mainly by in-plane forces, but at a certain load level it changes from a stable condition to an unstable condition or vise versa. The instability phenomenon of Geiger-type cable dome structure is generated due to the in-plane twisting near critical load level. Therefore the effect of bracing reinforcement is investigated for the Geiger-type model reinforced by bracing. The effect of initial imperfection is also studied since the structural instability behavior characteristic of shell-like structure is significantly sensitive according to the initial condition.

  • PDF

Dynamic Instability Analysis of Euler Column under Impact Loading (충격하중을 받는 Euler기둥의 동적좌굴 해석)

  • 김형열
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • An explicit direct time integration method based solution algorithm is presented to predict dynamic buckling response of Euler column. On the basis of large deflection beam theory, a plane frame finite element is formulated and implemented into the solution algorithm. The element formulation takes into account geometrical nonlinearity and overall buckling of steel structural frames. The solution algorithm employs the central difference method. Using the computer program developed by the author, dynamic instability behavior of Euler column under impact loading is investigated by considering the time variation of load, load magnitude, and load duration. The free vibration of Euler column caused by a short duration impact load is also studied. The validity and efficiency of the present formulation and solution algorithm are verified through illustrative numerical examples.

  • PDF

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.