• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.03 seconds

Seismic performance evaluation of mid-rise shear walls: experiments and analysis

  • Parulekar, Y.M.;Reddy, G.R.;Singh, R.K.;Gopalkrishnan, N.;Ramarao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.291-312
    • /
    • 2016
  • Seismic performance evaluation of shear wall is essential as it is the major lateral load resisting member of a structure. The ultimate load and ultimate drift of the shear wall are the two most important parameters which need to be assessed experimentally and verified analytically. This paper comprises the results of monotonic tests, quasi-static cyclic tests and shake-table tests carried out on a midrise shear wall. The shear wall considered for the study is 1:5 scaled model of the shear wall of the internal structure of a reactor building. The analytical simulation of these tests is carried out using micro and macro modeling of the shear wall. This paper mainly consists of modification in the hysteretic macro model, developed for RC structural walls by Lestuzzi and Badoux in 2003. This modification is made by considering the stiffness degradation effect observed from the tests carried out and this modified model is then used for nonlinear dynamic analysis of the shear wall. The outcome of the paper gives the variation of the capacity, the failure patterns and the performance levels of the shear walls in all three types of tests. The change in the stiffness and the damping of the wall due to increased damage and cracking when subjected to seismic excitation is also highlighted in the paper.

Structural Integrity Evaluation of Nuclear Seismic Category IIA 2" Globe Valve for Seismic Loads (지진하중을 받는 원자력 내진등급 2A 글로브 밸브의 구조 건전성 평가)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1500-1505
    • /
    • 2008
  • To evaluate the structural integrity of the nuclear seismic category IIA bellows seal 2" globe valve under the seismic service conditions the seismic analysis was performed in accordance with ASME, section III, ND-3500, 1989 edition. The finite element computer program, ANSYS, Version 10.0, is used to perform both a mode frequency analysis and an equivalent static seismic analysis of the valve assembly. The mode frequency analysis results show the fundamental natural frequency is greater than 33 Hz and does not exist in seismic range, thus justifying the use of the static analysis. The stresses resulted from various loadings and their combinations are within the allowable limits specified in the above mentioned ASME code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the ASME code. Accordingly the structural integrity on the globe valve was proved.

A Study on the Development of a Seismic Response Monitoring System for Cable Bridges by Using Accelerometers (가속도계를 이용한 사장교의 지진거동 계측시스템 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.283-292
    • /
    • 2021
  • In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.

The Structural Performance Evaluation of Steel Pipe Pile Cap with Perfobond Rib Shear Connector (유공강판 전단연결재로 보강된 강관말뚝머리의 구조 성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.843-851
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as requirement of shear key, disposition of reinforcing bars and insurance of anchoring length of reinforcements. This study suggests a new type of steel pipe pile cap system with perforated flat bar shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out and bending behavior are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

Design and Structural Safety Evaluation of Canister for Dry Storage System of PWR Spent Nuclear Fuels

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Donghee Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.559-570
    • /
    • 2023
  • The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.

Performance Evaluation of NDE Methods in Condition Assessment of Structural Elements (구조물 진단에 있어 비파괴 시험법의 성능평가)

  • Shim, Hyung Seop;Kang, Bo Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.167-175
    • /
    • 2007
  • The relations between data from test methods and conditions in structural elements are considered. NDE(Nondestructive Evaluation) methods are joint application of a test and a basis for interpretation of data obtained in the test. Correct assessments of conditions of elements depend on the inaccuracy and variability in the test data and on the uncertainty of correlations between attributes(what is measured) and conditions(what is sought in the inspection). A full description of the performance of NDE methods considers the relation of test data to condition of elements. The quality of the test data itself is important, but equally important is the interpretation that occurs after the test. To make the decision of the performance of NDE methods, this paper presents mathematical basis to measure the reliability of NDE methods.

Risk Estimates of Structural Changes in Freight Rates (해상운임의 구조변화 리스크 추정)

  • Hyunsok Kim
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.4
    • /
    • pp.255-268
    • /
    • 2023
  • This paper focuses on the tests for generalized fluctuation in the context of assessing structural changes based on linear regression models. For efficient estimation there has been a growing focus on the structural change monitoring, particularly in relation to fields such as artificial intelligence(hereafter AI) and machine learning(hereafter ML). Specifically, the investigation elucidates the implementation of structural changes and presents a coherent approach for the practical application to the BDI(Baltic Dry-bulk Index), which serves as a representative maritime trade index in global market. The framework encompasses a range of F-statistics type methodologies for fitting, visualization, and evaluation of empirical fluctuation processes, including CUSUM, MOSUM, and estimates-based processes. Additionally, it provides functionality for the computation and evaluation of sequences of pruned exact linear time(hereafter PELT).

Evaluation on Seismic Capacity of reinforced Concrete Structure Based on Structural Testing (구조실험을 통한 철근콘크리트구조의 내진성능 평가)

  • 서수연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.308-318
    • /
    • 2000
  • This paper introduces the acceptance criteria for reinforced concrete moment frames based on structural testing of ACI in preparing and proposes criteria for acceptable limiting drift and energy dissipation ratios of reinforced concrete shear walls for structural testing. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to results for a suggested acceptance criteria that involves a limiting drift that is a function of aspect ratio a limiting energy dissipation ratio that is a function of displacement ductility and damping.

  • PDF

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

Buckling Strength Analysis of Box-Column Including the Coupling Effect Between Local and Global Buckling

  • Paik, Jeom-K.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.36-42
    • /
    • 1988
  • In this study, a formulation of the idealized plate element based upon the idealized structural unit method(ISUM) firstly proposed by Ueda et.al is made in an attempt to analyze the geometric nonlinear behaviour up to the buckling strength of thin-walled long structures like box-column structure including the coupling effect between local and global buckling. An application to the example box-column is also performed and it is found that the present method gives reliable results with consuming very short computing times and therefore is very useful for evaluation of the buckling strength of thin-walled long structures.

  • PDF