• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.101 seconds

Development of a simplified equivalent braced frame model for steel plate shear wall systems

  • Chatterjee, Arghya Kamal;Bhowmick, Anjan;Bagchi, Ashutosh
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.711-737
    • /
    • 2015
  • Steel Plate Shear Walls (SPSWs) have been accepted widely as an effective lateral load resisting system. For seismic performance evaluation of a multi-story building with SPSWs, detailed finite element models or a strip model can be used to represent the SPSW components. However, such models often require significant effort for tall or medium height buildings. In order to simplify the analysis process, discrete elements for the framing members can be used. This paper presents development of a simplified equivalent braced model to study the behavior of the SPSWs. The proposed model is expected to facilitate a simplification to the structural modeling of large buildings with SPSWs in order to evaluate the seismic performance using regular structural analysis tools. It is observed that the proposed model can capture the global behavior of the structures quite accurately and potentially aid in the performance-based seismic design of SPSW buildings.

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Numerical analysis of second-order effects of externally prestressed concrete beams

  • Lou, Tiejiong;Xiang, Yiqiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.631-643
    • /
    • 2010
  • A numerical procedure for the geometrical and material nonlinear analysis of concrete beams prestressed with external tendons is described, where the effects of external prestressing are treated as the equivalent loads applied on the concrete beams. The geometrical nonlinearity is considered not only the eccentricity variations of external tendons (second-order effects) but also the large displacement effects of the structure. The numerical method can predict the nonlinear response of externally prestressed concrete beams throughout the entire loading history with considerable accuracy. An evaluation of second-order effects of externally prestressed concrete beams is carried out using the proposed analysis. The analysis shows that the second-order effects have significant influence on the response characteristics of externally prestressed concrete beams. They lead to inferior ultimate load and strength capacities and a lower ultimate stress increase in tendons. Based on the current analysis, it is recommended that, for simply-supported externally prestressed beams with straight horizontal tendons, one deviator at midspan instead of two deviators at one-third span be furnished to minimize these effects.

Stress-Strain Response of Polymer-Impregnated Concrete in Uniaxial and Biaxial Compression (일축 및 이축압축을 받는 폴리머침투콘크리트의 응력-변형률 특성)

  • 변근주;이상민;노병철;이용진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.93-98
    • /
    • 1991
  • Polymer-Impregnated Concrete(PIC) can be considered composite material of concrete and polymer and has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, so far, the usage of PIC has been limited to repairing materials and non-structural applications, due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is to define the stress-strain response and strength characteristics of PIC in uniaxial and various biaxial compressive loading. On the bases of experimental results, general stress-strain relation, biaxial failure envelope and strength evaluation formular of PIC made with normal aggregate and methylmethacrylate(MMA) are proposed.

  • PDF

Stability Evaluation for a riverbed tunnel in the Han River at the Fault Zone Crossing (한강 단층대를 통과하는 하저터널의 안정성 확보에 관한 연구)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • When building tunnels beneath riverbeds where very large quantities of groundwater inflow exist, added to high water head the soil supporting conditions are very poor because the soil consists of sand and silt, etc. It is necessary to have grouting and mini pipe roof installed in the region for ground reinforcement to decrease permeability. According to this result of horizontal boring and laboratory soil testing, ground reinforcement was achieved by L.W grouting for range of 3.0 times the tunnel radius, to increase stability of the tunnel we used the ling-cut method, 0.8m for one step excavation, shotcrete with 25cm thick, steel lib with H-$125{\times}125$. and a temporary shotcrete invert 20cm thick was installed to prevent deformation of the tunnel.

  • PDF

Fracture behavior of Cast-in-place Headed Anchors to Concrete (콘크리트 CIP 앵커시스템의 파괴 거동에 관한 연구)

  • Park, Sung-Gyun;Kim, Ho-Seop;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.141-152
    • /
    • 2001
  • This paper presents the evaluation of behavior and the prediction of tensile capacity of anchors that can cause a failure of the concrete on the basis of the design for anchorage. Tests of cast-in-place headed anchors, domestically manufactured and installed in uncracked and unreinforced concrete member are conducted to test the effected of embedment length and edge distance. The failure modes and the load-deformation responses of the anchors are discussed and then the concrete failure data are compared with capacities by the two present methods : the 45 degree cone method of ACI 349, 318 and the concrete capacity design (COD) method. Differences between the results by test and by two prediction methods are analyzed Finite Element Method (FEM).

  • PDF

Improved Criteria for Condition Assessment of Bridges Based on Visual Inspection (교량의 외관 조사에 의한 상태평가기준 개선안)

  • Oh, Byung-Hwan;Shin, Kyung-Joon;Kim, Kwang-Soo;Kim, Ji-Sang;Lee, Sang-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.205-213
    • /
    • 2001
  • The condition assessment of bridges is one of the important procedures in the safety evaluation of the structures. The current inspection guideline is rather ambiguous and vague so that the inspection results based on the existing guidelines are highly subjective and varing from person to person and even day to day for a given person. It is therefore, necessary to improve the current inspection criteria in order to provide consistent results in safety assessment. To circumvent possible inconsistencies in inspection and rating of bridge components, the revised criteria have been proposed in this study. The proposed guideline and criteria may be efficiently used for the realistic and consistent assessment of bridge structures.

  • PDF

A Non-Destructive Test for Strength Evaluation of Prestressed Concrete Beam Bridges (프리스트레스트 콘크리트 Beam 교량의 콘크리트 강도 평가를 위한 비파괴 검사)

  • Han, Kyoung-Bong;Chun, Young-Duk;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • Due to the heterogeneous nature of a concrete, periodic inspections are compulsory to maintenance of quality of concrete structures. The major object of this study is to analyze and investigate experimentally the experimental equation for the estimate of compressive strength of prestressed concrete. In this study, surface hardness method, ultrasonic method are investigated to evaluate strength of concrete specimens. Specimens are cast in laboratory and cores are cut from specimens in order to estimate the accurate strength. These values are used to compare with calculated values from test data. The result shows that the proposed equation can reproduce the results at prestressed concrete beam girders more appropriately than previous equations.

  • PDF

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF

A Study on Fatigue Performance Evaluation of Stress Concentration of Plate Members Using Composite Material (복합재료 사용 바닥판 부재의 응력집중부에 대한 피로성능 평가에 관한 연구)

  • Park, Tai-Young;Park, Joon-Seok;Kim, Doo-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.529-532
    • /
    • 2008
  • Recently the compound material has interested in using the structural material as the bridge member assembly. It is the lighter material against existing construction material and has excellent durability and economy. The existing floor of bridge has its short period to repair and replace compared to other parts of the bridge with the pavement and the shoe. These deteriorations of usage and safety by aging and corrosion are needed frequent maintenance. The use of compound material as a structural member suggests solve these problems. So this thesis evaluates the static and the fatigue performance for whether there are fiber lamination direction and stress concentration section of FRP floor plate, the compound material.

  • PDF