• 제목/요약/키워드: structural analysis and design

검색결과 6,894건 처리시간 0.038초

Elastic Critical Laod of Tapered Columns (단순지지 변단면 압축재의 임계하중)

  • 홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.252-259
    • /
    • 1999
  • One of the most important factors for a proper design of a slender compression member may be the exact determination of the elastic critical load of that member. In the cases of non-prismatic compression member, however, there are times when the exact critical load becomes impossible to determinate if one relies on the neutral equilibrium method or energy principle. Here in this paper, the approximate critical loads of symmetrically or non-symmetrically tapered members are computed by finite element method. The two parameters considered in this numerical analysis are the taper parameter, $\alpha$ and the sectional property parameters, m. The computed results for each sectional property parameter, m are presented in an algebraic equation which agrees with those by F.E.M The algebraic equation can be easily used by structural engineers, who are engaged in structural analysis and design of non-prismatic compression member.

  • PDF

Topology Design Optimization of Structures using Solid Elements (3 차원 요소를 이용한 구조물의 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper, we develop continuum-based design sensitivity analysis (DSA) methods using both direct differential method (DDM) and adjoint variable method (AVM) for non-shape design problems. The developed DSA method is further utilized for the topology design optimization of 3-dimensional structures. In numerical examples, the analytical DSA results are verified using finite difference ones. The topology optimization method yields very reasonable results in physical point of view.

  • PDF

Structural analysis of Rubber Tired AGT (고무차륜 경량전철의 구조강도 해석 연구)

  • 구정서;한형석;송달호
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.193-199
    • /
    • 2001
  • In this study, the carbody design of the rubber tired AGT(Automated Guide-way Transit System) under development by KRRI was numerically analysed to evaluate its structural strength according to the standard specifications for Korean LRT (Light Rail Transit). The numerical results showed that the detail design of the carbody was strong enough to satisfy the specifications with respect to the axial compression strength, the vertical strength and the vertical stiffness(natural frequency). However, the carbody design had some problems on the fatigue strength by twist loadings. So, it was recommended that the carbody design should be modified to improve the twisting strength by reinforcing the front end structures.

  • PDF

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1469-1474
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

  • PDF

Structural Performance Evaluation of Stone Pagoda of Mireuk Temple Site in accordance with Construction Type (미륵사지 석탑의 축조형식에 따른 구조성능 평가)

  • Kim, Ho-Soo;Park, Chan-Hong;Lee, Ha-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • 제14권2호
    • /
    • pp.41-50
    • /
    • 2014
  • The stone pagoda of Mireuk temple site is currently restoring through the repairing process. This stone pagoda has the various construction types in the inner and outer space. Therefore, the stress concentration and structural behavior need to be considered through the analysis of various construction patterns. To this end, this study presents the structural modelling and analysis considering the discrete element analysis technique to solve the discontinuum behavior between the stone elements. Also, this study performs the structural performance evaluation through the various design variables for the safety of stone pagoda. Through the analysis results, we can find out the small stress concentration in the several members. But, because the stresses and displacements are relatively small, we can secure the safety of the whole structure.

A Study for Transfer Girder Details of the Upper-Wall and Lower-Frame Structures (주상복합구조의 전이보 상세설계기법 연구)

  • 이한선;김상연;고동우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.529-534
    • /
    • 2000
  • Hybrid building structure, which comprise both the residential and commercial spaces in a building, are composed of upper shear-walls and lower frames. In these hybrid structures, the structural analysis and design of transfer systems which link upper-wall and lower-frame are crucial. The available structural design methods for the transfer girder are performed by taking a prototype structure, and the details of transfer girder based on these design methods are presented and compared with regard to the dimensions and amount of reinforcements.

  • PDF

Improvement in Prediction Accuracy of Springback for Stamping CAE considering Tool Deformation (금형변형을 고려한 성형 CAE에서의 스프링백 예측정확도 향상)

  • Park, J.S.;Choi, H.J.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • 제23권6호
    • /
    • pp.380-385
    • /
    • 2014
  • An analysis procedure is proposed to improve the prediction accuracy of springback as well as to evaluate the structural stability of the tooling used for fabricating a side sill part from UHSS. The analysis couples the stamping analysis and the subsequent analysis of the tool structural. The deformation and stress results for the tool structure are obtained from the proposed analysis procedure. The results show that the amount of deformation and stresses are so high that the tool structure must be reinforced and the tooling design must consider structural stability. Springback is predicted with CAE in order to compare the prediction accuracy between the given tool geometry and the geometry from the structural analysis. The simulation results with the deformed tool can predict the experimental springback tendency accurately.

Structural Modification for Vehicle Interior Noise Reduction Using Vibration Response Sensitivity Analysis

  • Park, Yong-Hwa;Cheung, Wan-Sup;Park, Youn-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권3E호
    • /
    • pp.3-11
    • /
    • 2000
  • A structural modification technique for reducing structure-borne noise of vehicles using a sensitivity analysis is suggested. To estimate the noises generated by the vibration response, a semi structure-acoustic coupling analysis was exploited. As a result of the coupling analysis, severe noise generating positions are identified whose vibrations should be cured through structural modifications. Formulation for the sensitivity analysis of those severe vibration responses with respect to the design changes is derived to enhance the vibration response. Special attention is given in this paper to the use of the experimentally measured vibration responses in the sensitivity analysis. As a result of the proposed method, the structural modifications can be peformed accurately by using experimental data instead of using the finite element method though the higher vibration modes are considered as long as the vibration measurement and acoustic mode calculations are accurate. Effectiveness of this method was examined using an example model by experiments.

  • PDF

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.105-120
    • /
    • 2019
  • In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

Design and Structural Analysis of Electric Saver Box (전력절감기함의 설계 및 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권6호
    • /
    • pp.2435-2440
    • /
    • 2012
  • In this paper, Solidworks was used to do a conceptional design of an box of an electric saver in order to manufacture an electric saver having a different performance and model. Based on this, analysis was made considering weight concentrated on an box. 3-dimensional finite element analysis code, ANSYS was applied to obtain stress, strain and deformation in order to secure durability and these data was reflected to a detailed drawing.