• 제목/요약/키워드: strongly regular ring

검색결과 48건 처리시간 0.02초

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.

Weakly Semicommutative Rings and Strongly Regular Rings

  • Wang, Long;Wei, Junchao
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.65-72
    • /
    • 2014
  • A ring R is called weakly semicommutative ring if for any a, $b{\in}R^*$ = R\{0} with ab = 0, there exists $n{\geq}1$ such that either an $a^n{\neq}0$ and $a^nRb=0$ or $b^n{\neq}0$ and $aRb^n=0$. In this paper, many properties of weakly semicommutative rings are introduced, some known results are extended. Especially, we show that a ring R is a strongly regular ring if and only if R is a left SF-ring and weakly semicommutative ring.

ON A RING PROPERTY UNIFYING REVERSIBLE AND RIGHT DUO RINGS

  • Kim, Nam Kyun;Lee, Yang
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1083-1103
    • /
    • 2013
  • The concepts of reversible, right duo, and Armendariz rings are known to play important roles in ring theory and they are independent of one another. In this note we focus on a concept that can unify them, calling it a right Armendarizlike ring in the process. We first find a simple way to construct a right Armendarizlike ring but not Armendariz (reversible, or right duo). We show the difference between right Armendarizlike rings and strongly right McCoy rings by examining the structure of right annihilators. For a regular ring R, it is proved that R is right Armendarizlike if and only if R is strongly right McCoy if and only if R is Abelian (entailing that right Armendarizlike, Armendariz, reversible, right duo, and IFP properties are equivalent for regular rings). It is shown that a ring R is right Armendarizlike, if and only if so is the polynomial ring over R, if and only if so is the classical right quotient ring (if any). In the process necessary (counter)examples are found or constructed.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.

On Left SF-Rings and Strongly Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.861-866
    • /
    • 2016
  • A ring R called left SF if its simple left modules are at. Regular rings are known to be left SF-rings. However, till date it is unknown whether a left SF-ring is necessarily regular. In this paper, we prove the strong regularity of left (right) complement bounded left SF-rings. We also prove the strong regularity of a class of generalized semi-commutative left SF-rings.

A Characterization on Strong Reducibility of Near-Rings

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제10권
    • /
    • pp.283-292
    • /
    • 2000
  • We shall introduce new concepts of near-rings, that is, strong reducibility and left semi ${\pi}$-regular near-rings. We will study every strong reducibility of near-ring implies reducibility of near-ring but this converse is not true, and also some characterizations of strong reducibility of near-rings. We shall investigate some relations between strongly reduced near-rings and left strongly regular near-rings, and apply strong reducibility of near-rings to the study of left semi ${\pi}$-regular near-rings, s-weekly regular near-rings and some other regularity of near-rings.

  • PDF

A SPECIAL REDUCEDNESS IN NEAR-RINGS

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • 제22권1호
    • /
    • pp.61-69
    • /
    • 2006
  • A near-ring N is reduced if, for $a{\in}N,\;a^2=0$ implies a=0, and N is left strongly regular if for all $a{\in}N$ there exists $x{\in}N$ such that $a=xa^2$. Mason introduced this notion and characterized left strongly regular zero-symmetric unital near-rings. Several authors ([2], [5], [7]) studied these properties in near-rings. Reddy and Murty extended some results in Mason to the non-zero symmetric case. In this paper, we will define a concept of strong reducedness and investigate a relation between strongly reduced near-rings and left strongly regular near-rings.

  • PDF

Strong Reducedness and Strong Regularity for Near-rings

  • CHO, YONG UK;HIRANO, YASUYUKI
    • Kyungpook Mathematical Journal
    • /
    • 제43권4호
    • /
    • pp.587-592
    • /
    • 2003
  • A near-ring N is called strongly reduced if, for $a{\in}N$, $a^2{\in}N_c$ implies $a{\in}N_c$, where $N_c$ denotes the constant part of N. We investigate some properties of strongly reduced near-rings and apply those to the study of left strongly regular near-rings. Finally we classify all reduced, and strongly reduced near-rings of order ${\leq}7$.

  • PDF