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Abstract. A ring R is called weakly semicommutative ring if for any a, b ∈ R∗ = R \ {0}
with ab = 0, there exists n ≥ 1 such that either an ̸= 0 and anRb = 0 or bn ̸= 0 and

aRbn = 0. In this paper, many properties of weakly semicommutative rings are introduced,

some known results are extended. Especially, we show that a ring R is a strongly regular

ring if and only if R is a left SF−ring and weakly semicommutative ring.

1. Introduction

All rings considered in this paper are associative rings with identity, and all
modules are unital. Let R be a ring, write R∗ = R \ {0} and E(R) and N(R)
denote the set of all idempotents and the set of all nilpotents of R, respectively. For
any nonempty subset X of R, r(X) = rR(X) and l(X) = lR(X) denote the set of
right annihilators of X and the set of left annihilators of X, respectively. Especially,
if X = a, we write l(X) = l(a) and r(X) = r(a).

A ring R is called (von Neumann) regular ring if for every a ∈ R there exists
b ∈ R such that a = aba. A ring R is strong regular if for every a ∈ R there exists
b ∈ R such that a = a2b. A ring R is called reduced if R has no nonzero nilpotent
elements. It is well known that R is a strongly regular ring if and only if R is a
reduced regular ring. A ring R is called left (resp., right) quasi-duo ring if every
maximal left (resp., right) ideal of R is an ideal. A ring R is called MELT (resp.,
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MERT ) ring if every essentian maximal left (resp., right) ideal of R is an ideal.
According to Ramamurthi (1975), a ring R is called a left (resp., right) SF−ring if
each simple left (resp., right) R−module is flat. It is known that regular rings are left
and right SF−rings. Ramamurthi (1975) initiated the study of SF−rings and the
question whether an SF−ring is necessarily regular. For several years, SF−rings
have been studied by many authors and the regularity of SF−rings which satisfy
certain additional conditions is showed (cf. Ramamurthi, 1975; Rege, 1986; Yue
Chi Ming, 1980, 1982, 1988; Zhang and Du, 1992, 1993; Zhang, 1994, 1998; Zhou
and Wang, 2004a, 2004b; Zhou, 2007). But the question remains open. Yue Chi
Ming (1988) proved the strong regularity of right SF−rings whose complement left
ideals are ideals, and he proposed the following question: Is R strong regular if R
is a left SF−rings whose complement left ideals are ideals? Zhang and Du (1992)
affirmatively answered the question. Zhou and Wang (2004a) proved that if R is a
right SF−rings whose all essential maximal right ideals are GW−ideals, then R is
a regular ring. Zhang (1998) proved that if R is an MELT and right SF−rings,
then R is a regular ring. Zhou (2007) proved that if R is a left SF−rings whose
complement left (right) ideals are W−ideals, then R is a strongly regular ring.
Following Zhou and Wang (2004a), a left ideal L of a ring R is called GW−ideal,
if for any a ∈ L, there exists a positive integer n such that anR ⊆ L. Clearly, ideal
is GW−ideal, but the converse is not true, in general, by Zhou and Wang (2004a,
Example 1.2).

According to Zhou (2007), a left ideal L of a ring R is called a weak ideal
(W−ideal), if for any 0 ̸= a ∈ L, there exists n ≥ 1 such that an ̸= 0 and anR ⊆ L.
A right ideal K of a ring R is defined similarly to be a weak ideal. Clearly, ideals are
W−ideals and W−ideals are GW−ideals, but the converse are not true, in general,
by Zhou (2007).

According to Cohn (1999), a ring R is called symmetric if abc = 0 implies
acb = 0 for a, b, c ∈ R, and R is said to be reversible if ab = 0 implies ba = 0 for
a, b ∈ R, and R is said to be semicommutative if ab = 0 implies aRb = 0. Clearly,
reduced =⇒symmetric =⇒ reversible =⇒ semicommutative .

A ring R is called weakly semicommutative ring if for any a, b ∈ R∗ and ab = 0,
there exists n ≥ 1 such that either an ̸= 0 and anRb = 0 or bn ̸= 0 and aRbn = 0.

Clearly, semicommutative rings are weak semicommutative.
The first purpose of this paper is to study the properties of weakly semicom-

mutative rings, the next purpose of this paper is to give a new characterization of
strongly regular rings in terms of left SF−rings and weakly semicommutative rings.
Finally some known results in Rege(1986) can be extended.

According to Hwang (2007), a ring R is called NCI if N(R) = 0 or there exists
a nonzero ideal of R contained in N(R). Clearly, NI rings (that is, N(R) forms an
ideal of R) are NCI, but the converse is not true, in general, by Hwang (2007).

Following Wei and Chen (2007), left R−module M is called Wnil−injective
if for any 0 ̸= a ∈ N(R), there exists n ≥ 1 such that an ̸= 0 and every left
R−homomorphism Ran to M extends to R. Evidently, Y J−injective modules (c.f.,
Kim, Nam and Kim (1999)) are Wnil−injective, but the converse is not true, in
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general, by Wei and Chen (2007).

2. Main Results

We begin with the following theorem.

Theorem 1. (1) Weakly semicommutative rings are Abelian.

(2) Weakly semicommutative rings are NCI.

(3) Let R be a weakly semicommutative ring. If every simple singular left
R−module is Wnil−injective, then R is a reduced ring.

Proof. (1) Let R be a weakly semicommutative ring and e ∈ E(R). We can assume
that 0 ̸= e ̸= 1. Since R is a weakly semicommutative ring and e(1− e) = 0, there
exists n ≥ 1 such that either en ̸= 0 and enR(1 − e) = 0 or (1 − e)n ̸= 0 and
eR(1− e)n = 0. Therefore we obtain eR(1− e) = 0, which implies R is an Abelian
ring.

(2) If N(R) ̸= 0, then there exists 0 ̸= a ∈ N(R). Let n ≥ 1 such that an = 0
and an−1 ̸= 0. Since R is a weakly semicommutative ring and an−1a = 0, there
exists m ≥ 1 such that either (an−1)m ̸= 0 and (an−1)mRa = 0 or am ̸= 0 and
an−1Ram = 0. If (an−1)m ̸= 0 and (an−1)mRa = 0, then m = 1, so an−1Ra = 0,
this gives an−1Ran−1 = 0. If am ̸= 0 and an−1Ram = 0, then m ≤ n − 1, so
an−1Ran−1 = 0. Therefore Ran−1R is a nonzero nilpotent ideal of R, so R is a
NCI ring.

(3) Let a2 = 0. If a ̸= 0, then there exists a maximal left ideal M of R such that
l(a) ⊆ M . If M is not essential in RR, then M = l(e) for some e ∈ E(R). Thus
ae = 0 because a ∈ l(a) ⊆ M . By (1), R is an Abelian ring, so ea = 0. This gives
e ∈ l(a) ⊆ l(e), a contradiction. Hence M is an essential left ideal of R, so R/M
is a simple singular left R−module. By hypothesis, R/M is a Wnil−injective left
R−module. Let f : Ra −→ R/M defined by f(ra) = r+M . Then f is a well defined
left R−homomorphism, so there exists a left R−homomorphism g : R −→ R/M
such that g(a) = f(a). Hence there exists c ∈ R such that 1 +M = f(a) = g(a) =
ag(1) = ac + M . Since R is a weakly semicommutative ring, aRa = 0. Thus
ac ∈ l(a) ⊆ M . This leads to 1 ∈ M , which is a contradiction. Hence a = 0. 2

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. It is well
known that Abelian rings are directly finite. Hence weakly semicommutative rings
are directly finite by Theorem 1. According to Hwang (2007), NCI rings need not
be directly finite. Hence NCI rings need not be weakly semicommutative. It is well
known that NI rings are directly finite, so, we ask:

Is NI ring weakly semicommutative?

Regretfully, the answer is ”no”. For example, let F be a field and R =(
F F
0 F

)
. Since N(R) =

(
0 F
0 0

)
is an ideal of R, R is a NI ring. Clearly,(

1 1
0 0

)
and

(
0 −1
0 1

)
are idempotents in R. Since

(
1 1
0 0

)(
0 −1
0 1

)
= 0
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and

(
1 1
0 0

)
R

(
0 −1
0 0

)
=

(
0 F
0 0

)
̸= 0, R is not weakly semicommutative.

A ring R is called left WNV if every simple singular left R−module is
Wnil−injective. Clearly, left V−rings and reduced rings are left WNV . Since
reduced rings are reversible and reversible rings are semicommutative, by Theorem
1, we have the following corollary.

Corollary 2. The following conditions are equivalent for a ring R:

(1) R is a reduced ring;

(2) R is a reversible ring and left WNV ring;

(3) R is a semicommutative ring and left WNV ring;

(4) R is a weakly semicommutative ring and left WNV ring.

A ring R is called biregular if for every a ∈ R, RaR is generated by a central
idempotent of R. A ring R is called weakly regular if for any a ∈ R, a ∈ RaRa ∩
aRaR. Clearly, biregular rings are weak regular, but the converse is not true, in
general. Certainly, reduced weakly regular rings are biregular. Kim, Nam and Kim
(1999, Theorem 4) proved that if R is a left semicommutative ring whose every
simple singular left module is Y J−injective, then R is a reduced weakly regular
ring. Hence, by Corollary 2, we have the following corollary.

Corollary 3. Let R be a weakly semicommutative ring. If every simple singular
left R−module is Y J−injective, then R is a reduced biregular ring.

Wei (2007, Theorem 16) proved that a ring R is a strongly regular ring if and
only if R is a semicommutative MELT ring whose simple singular left modules are
Y J−injective. Hence, by Corollary 2, we have the following corollary.

Corollary 4. A ring R is a strongly regular ring if and only if R is a MELT weakly
semicommutative ring whose every simple singular left module is Y J−injective.

It is well known that a ring R is a reduced ring if and only if R is a semiprime
ring and semicommutative ring. On the other hand, semiprime weakly semicom-
mutative rings are reversible (In fact, if ab = 0, then (ba)2 = 0. If R is a weakly
semicommutative ring, then baRba = 0. Since R is a semiprime ring, ba = 0). so
we have the following theorem.

Theorem 5. The following conditions are equivalent for a ring R:

(1) R is a reduced ring;

(2) R is a semiprime weakly semicommutative ring.

A ring R is called left Kasch if every simple left R−module is isomorphic to a
minimal left ideal of R. Recently, in their paper Lam and Dugas (2005, Proposition
4.11), Lam and Dugas showed that left Kasch semicommutative ring is left quasi-
duo. We can generalize the result as follows.
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Theorem 6. Let R be a left Kasch weakly semicommutative ring. Then R is left
quasi-duo ring.

Proof. Let M be a maximal left ideal of R. Since R is a left Kasch ring, M = l(k)
for some k ∈ R. Clearly, Rk ∼= R/l(k) = R/M , so Rk is a minimal left ideal of
R. For any a ∈ R∗, we have Ma ⊆ M . If not, then there exists a ∈ R∗ such
that Ma " M , so Ma +M = R and a /∈ M . Let xa + y = 1 for some x, y ∈ M .
Since ax ∈ M , axk = 0. If ax = 0, then a = a1 = axa + ay = ay ∈ M , which
is a contradiction. Hence ax ̸= 0. Since R is a weakly semicommutative ring,
there exists n ≥ 1 such that either (ax)n ̸= 0 and (ax)nRk = 0 or kn ̸= 0 and
axRkn = 0. If kn ̸= 0 and (ax)Rkn = 0, then Rkn = Rk because Rk is a minimal
left ideal of R. Hence axRk = 0, so axak = 0 and axa ∈ l(k) = M , which implies
a = a1 = axa + ay ∈ M , a contradiction. If (ax)n ̸= 0 and (ax)nRk = 0, then
(ax)nak = 0 and so (ax)na ∈ M . Therefore (ax)n−1a = (ax)n−1a1 = (ax)n−1axa+
(ax)n−1ay = (ax)na + (ax)n−1ay ∈ M . Repeating the process mentioned above,
we obtain axa ∈ M , so a ∈ M , which is a contradiction. Therefore Ma ⊆ M for
any a ∈ R, so M is an ideal of R and then R is a left quasi-duo ring. 2

Evidently, the class of weakly semicommutative rings is closed under subrings.
But we do not know whether the class of weakly semicommutative rings is closed
under direct products. Although we know that it is a known result that the class
of semicommutative rings is closed under subrings and direct products.

Theorem 7. Let R be a ring and ∆ be a multiplicatively closed subset of R con-
sisting of central regular elements. Then R is a weakly semicommutative ring if and
only if ∆−1R is a weakly semicommutative ring.

Proof. The sufficiency is clear.
Now let αβ = 0 with α = u−1a, β = v−1b ∈ (∆−1R)∗, u, v ∈ ∆ and

a, b ∈ R. Since ∆ is contained in the center of R, we have 0 = αβ = u−1av−1b =
(u−1v−1)ab = (uv)−1ab and ab = 0. Clearly, a, b ∈ R∗. Since R is a weakly semi-
commutative ring, there exists n ≥ 1 such that either an ̸= 0 and anRb = 0 or bn ̸= 0
and aRbn = 0. Hence, either αn ̸= 0 and αn(∆−1R)β = (u−1)nv−1∆−1anRb = 0
or βn ̸= 0 and α(∆−1R)βn = u−1∆−1(v−1)naRbn = 0. Hence ∆−1R is a weakly
semicommutative ring. 2

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all
formal sums Σn

i=kmix
i with obvious addition and multiplication, where mi ∈ R and

k, n are (possibly negative) integers; denote it by R[x;x−1].

Corollary 8. For a ring R, R[x] is a weakly semicommutative ring if and only if
R[x;x−1] is a weakly semicommutative ring.

Proof. It suffices to establish necessity. Let ∆ = {1, x, x2, · · · , xn, · · · }. Then,
clearly, ∆ is a multiplicatively closed subset of R[x]. Since R[x;x−1] = ∆−1R[x]
and ∆ is contained in the center of R[x], it follows that R[x;x−1] is a weakly
semicommutative ring by Theorem 7. 2

Theorem 9. The finite subdirect product of weakly semicommutative rings is a
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weakly semicommutative ring.

Proof. Let {Li|i = 1, 2, · · · , n} be ideals of R such that ∩n
i=1Li = 0 and all R/Li be

weakly semicommutative rings. Let a, b ∈ R∗ with ab = 0. For any i ∈ {1, 2, · · · , n},
if one of a, b belongs to Li, then aRb ⊆ Li. If a /∈ Li and b /∈ Li, then ā, b̄ ∈ (R̄)∗

and āb̄ = 0, where R̄ = R/Li. Since R/Li is a weakly semicommutative ring, there
exists ni ≥ 1 such that either āni ̸= 0 and āniR̄b̄ = 0 or b̄ni ̸= 0 and āR̄b̄ni = 0.
So either ani ̸= 0 and aniRb ⊆ Li or bni ̸= 0 and aRbni ⊆ Li. In any case, there
exists mi ≥ 1 (in fact either mi = 1 or mi = ni) such that either ami ̸= 0 and
amiRb ⊆ Li or b

mi ̸= 0 and aRbmi ⊆ Li. Let m = max{mi|i = 1, 2, · · · , n}. Then,
clearly, either am ̸= 0 and amRb ⊆ ∩n

i=1Li or b
m ̸= 0 and aRbm ⊆ ∩n

i=1Li, that is
amRb = 0 or aRbm = 0. Hence R is a weakly semicommutative ring. 2

It is well known that a ring R is a semicommutative ring if and only if R is
an Abelian ring and for any idempotent e of R, eRe and (1 − e)R(1 − e) are all
semicommutative rings.

Corollary 10. Let R be a ring and e2 = e ∈ R. Then R is a weakly semicommuta-
tive ring if and only if R is an Abelian ring and eRe and (1− e)R(1− e) are weakly
semicommutative rings.

Proof. It suffices to establish sufficiency. Since R is an Abelian ring, we have ring
isomorphism: R/eRe ∼= (1 − e)R(1 − e) and R/(1 − e)R(1 − e) ∼= eRe. By hy-
pothesis, R/eRe and R/(1 − e)R(1 − e) are weakly semicommutative rings. Since
eRe∩ (1−e)R(1−e) = 0, R is a subdirect product of R/eRe and R/(1−e)R(1−e).
By Theorem 9, R is a weakly semicommutative ring. 2

Rege (1986, Remark 3.13) pointed out that if R is a reduced left (right)
SF−ring, then R is a strongly regular ring. We can extend this result to weakly
semicommutative rings.

Theorem 11. If R is a left SF−ring and weakly semicommutative ring, then R is
a strongly regular ring.

Proof. Assume that a ∈ R. If a = 0, then a is a von Neumann regular element. If
a ̸= 0, then we claim that Ra + ∪∞

i=1r(a
iR) = R. If not, there exists a maximal

left ideal M of R containing Ra+ ∪∞
i=1r(a

iR), so R/M is a simple left R−module,
by hypothesis, R/M is flat left R−module. Since a ∈ M , a = ab for some b ∈ M .
Clearly, b ̸= 1. Since R is a weakly semicommutative ring and a(1 − b) = 0, there
exists n ≥ 1 such that either an ̸= 0 and anR(1 − b) = 0 or (1 − b)n ̸= 0 and
aR(1 − b)n = 0. If an ̸= 0 and anR(1 − b) = 0, then 1 − b ∈ r(anR) ⊆ M , so
1 = (1− b) + b ∈ M , which is a contradiction. If (1− b)n ̸= 0 and aR(1− b)n = 0,
then (1−b)n ∈ r(aR) ⊆ M , so 1 = (1− (1−b)n)+(1−b)n = (1+(1−b)+(1−b)2+
· · ·+(1−b)n−1)b+(1−b)n ∈ M , which is a contradiction. Thus Ra+∪∞

i=1r(a
iR) =

R. Let 1 = ca + x where c ∈ R and x ∈ ∪∞
i=1r(a

iR). Let x ∈ r(amR). Then
amx = 0, so am = am1 = amca + amx = amca. If m = 1, then a = aca, so a
is a von Neumann regular element. If m ≥ 2, then let b = am−1 − am−1ca. By
computing, we have b2 = 0. If b = 0, then am−1 = am−1ca. If b ̸= 0, then we claim
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that Rb + r(bR) = R. If not, there exists a maximal left ideal L of R containing
Rb+r(bR). Certainly, R/L is a flat left R−module, so b = bd for some d ∈ L. Since
there exists t ≥ 1 such that either bt ̸= 0 and btR(1 − d) = 0 or (1 − d)t ̸= 0 and
bR(1 − d)t = 0. If bt ̸= 0 and btR(1 − d) = 0, then t = 1, so bR(1 − d) = 0, which
implies 1 − d ∈ r(bR) ⊆ L. This is impossible because d ∈ L. If (1 − d)t ̸= 0 and
bR(1− d)t = 0, then (1 − d)t ∈ r(bR) ⊆ L. This also gives 1 ∈ L, a contradiction.
Hence Rb + r(bR) = R, this leads to b = bub for some u ∈ R, so, by computing,
we obtain that am−1 = am−1(c + (1 − ca)u(am−2 − am−1c))a. In any case, we
obtain v ∈ R (in fact, either v = c or v = c+ (1− ca)u(am−2 − am−1c)) satisfying
am−1 = am−1va. Repeating the process mentioned above, we can obtain w ∈ R
such that a = awa, so a is a von Neumann regular element. Therefore R is a von
neumann regular ring. By Theorem 1(1), R is an Ableian ring, so R is a strongly
regular ring. 2

Corollary 12. The following conditions are equivalent for a ring R:
(1) R is a strongly regular ring;
(2) R is a left SF−ring and semicommutative ring;
(3) R is a left SF−ring and reversible ring;
(4) R is a left SF− ring and symmetric ring;
(5) R is a left SF−ring and reduced ring.

Since regular rings are left SF−rings, by Theorem 11, we have the following
corollary.

Corollary 13. The following conditions are equivalent for a ring R:
(1) R is a strongly regular ring;
(2) R is a regular ring and weakly semicommutative ring.

According to Wei and Chen (2007), a ring R is called n−regular if for each
a ∈ N(R), a ∈ aRa. Clearly, reduced rings are n−regular. Wei and Chen (2008,
Theorem 2.7) points out that a ring R is reduced if and only if R is n−regular and
Abelian. Hence by Theorem 1, we have the following corollary.

Corollary 14. The following conditions are equivalent for a ring R:
(1) R is a reduced ring;
(2) R is a n−regular ring and weakly semicommutative ring.

Observing Theorem 1 and Corollary 14, we obtain the following theorem.

Theorem 15. The following conditions are equivalent for a ring R:
(1) R is a reduced ring;
(2) R is a n−regular ring and NCI ring.

Proof. (1) =⇒ (2) is trivial.
(2) =⇒ (1) If N(R) ̸= 0, then there exists a nonzero ideal I of R contained

in N(R) because R is NCI. Let 0 ̸= a ∈ I. Then a = aba for some b ∈ R by
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hypothesis. Since ba ∈ E(R) and ba ∈ I ⊆ N(R), ba = 0. Hence a = aba = 0,
which is a contradiction. Hence N(R) = 0 and so R is a reduced ring. 2
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