• 제목/요약/키워드: strong convergence theorems

검색결과 104건 처리시간 0.03초

STRONG CONVERGENCE THEOREMS FOR FIXED POINT PROBLEMS OF ASYMPTOTICALLY QUASI-𝜙-NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Jeong, Jae Ug
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.621-633
    • /
    • 2014
  • In this paper, we introduce a general iterative algorithm for asymptotically quasi-${\phi}$-nonexpansive mappings in the intermediate sense to have the strong convergence in the framework of Banach spaces. The results presented in the paper improve and extend the corresponding results announced by many authors.

WEAK AND STRONG CONVERGENCE OF THREE STEP ITERATION SCHEME WITH ERRORS FOR NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Jeong, Jae Ug;Kwun, Young Chel
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.235-252
    • /
    • 2014
  • In this paper, weak and strong convergence theorems of three step iteration process with errors are established for two weakly inward and non-self asymptotically nonexpansive mappings in Banach spaces. The results obtained in this paper extend and improve the several recent results in this area.

STRONG CONVERGENCE OF AN IMPLICIT ITERATIVE PROCESS FOR AN INFINITE FAMILY OF STRICT PSEUDOCONTRACTIONS

  • Cho, Yeol-Je;Kang, Shin-Min;Qin, Xiaolong
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1259-1268
    • /
    • 2010
  • In this paper, we consider an implicit iterative process with errors for an in nite family of strict pseudocontractions. Strong convergence theorems are established in the framework of Banach spaces. The results presented in this paper improve and extend the recent ones announced by many others.

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

On Deferred Statistical Convergence of Sequences

  • Kucukaslan, Mehme;Yilmazturk, Mujde
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.357-366
    • /
    • 2016
  • In this paper, deferred statistical convergence is defined by using deferred $Ces{\grave{a}}ro$ mean instead of $Ces{\grave{a}}ro$ mean in the definition of statistical convergence. The obtained method is compared with strong deferred $Ces{\grave{a}}ro$ mean and statistical convergence under some certain assumptions. Also, some inclusion theorems and examples are given.

BOUNDED CONVERGENCE THEOREMS

  • Niemiec, Piotr
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.319-357
    • /
    • 2017
  • There are presented certain results on extending continuous linear operators defined on spaces of E-valued continuous functions (defined on a compact Hausdorff space X) to linear operators defined on spaces of E-valued measurable functions in a way such that uniformly bounded sequences of functions that converge pointwise in the weak (or norm) topology of E are sent to sequences that converge in the weak, norm or weak* topology of the target space. As an application, a new description of uniform closures of convex subsets of C(X, E) is given. Also new and strong results on integral representations of continuous linear operators defined on C(X, E) are presented. A new classes of vector measures are introduced and various bounded convergence theorems for them are proved.

STRONG CONVERGENCE OF HYBRID METHOD FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS AND SEMIGROUPS

  • Liu, Li;Wang, Lijing;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.669-680
    • /
    • 2011
  • In this paper, some strong convergence theorems are obtained for hybrid method for modified Ishikawa iteration process of asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups in Hilbert spaces. The results presented in this article generalize and improve results of Tae-Hwa Kim and Hong-Kun Xu and others. The convergence rate of the iteration process presented in this article is faster than hybrid method of Tae-Hwa Kim and Hong-Kun Xu and others.

CONVERGENCE THEOREMS OF THE ITERATIVE SEQUENCES FOR NONEXPANSIVE MAPPINGS

  • Kang, Jung-Im;Cho, Yeol-Je;Zhou, Hai-Yun
    • 대한수학회논문집
    • /
    • 제19권2호
    • /
    • pp.321-328
    • /
    • 2004
  • In this paper, we will prove the following: Let D be a nonempty of a normed linear space X and T : D -> X be a nonexpansive mapping. Let ${x_n}$ be a sequence in D and ${t_n}$, ${s_n}$ be real sequences such that (i) $0\;{\leq}\;t_n\;{\leq}\;t\;<\;1\;and\;{\sum_{n=1}}^{\infty}\;t_n\;=\;{\infty},\;(ii)\;(a)\;0\;{\leq}\;s_n\;{\leq}\;1,\;s_n\;->\;0\;as\;n\;->\;{\infty}\;and\;{\sum_{n=1}}^{\infty}\;t_ns_n\;<\;{\infty}\;or\;(b)\;s_n\;=\;s\;for\;all\;n\;{\geq}\;1\;and\;s\;{\in}\;[0,1),\;(iii)\;x_{n+1}\;=\;(1-t_n)x_n+t_nT(s_nTx_n+(1-s_n)x_n)\;for\;all\;n\;{\geq}\;1.$ Then, if the sequence {x_n} is bounded, then $lim_{n->\infty}\;$\mid$$\mid$x_n-Tx_n$\mid$$\mid$\;=\;0$. This result improves and complements a result of Deng [2]. Furthermore, we will show that certain conditions on D, X and T guarantee the weak and strong convergence of the Ishikawa iterative sequence to a fixed point of T.

STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES

  • Wang, Xuejun;Hu, Shuhe;Volodin, Andrei I.
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.923-938
    • /
    • 2011
  • Some properties for negatively orthant dependent sequence are discussed. Some strong limit results for the weighted sums are obtained, which generalize the corresponding results for independent sequence and negatively associated sequence. At last, exponential inequalities for negatively orthant dependent sequence are presented.