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Abstract. In this paper, deferred statistical convergence is defined by using deferred

Cesàro mean instead of Cesàro mean in the definition of statistical convergence. The ob-

tained method is compared with strong deferred Cesàro mean and statistical convergence

under some certain assumptions. Also, some inclusion theorems and examples are given.

1. Introduction and Definitions

The concept of statistical convergence was introduced by I.J. Steinhaus in [17]
and H. Fast in [6] independently in the same year. Nowadays, this subject has be-
came one of the most active research area in the theory of summability. It was
applied in different areas of mathematics such as number theory by P. Erdös-
G.Tenenbaum [5] and summability theory by A. R. Freedman-J. J. Sember-M.
Raphael [7].

Furthermore, this subject was studied in [3], [4], [8], [9], [10], [15], [16] etc.

Statistical convergence is also closely related to the subject of asymptotic den-
sity(or natural density) of the subset of natural numbers (see, [2]) and its root goes
back to A. Zygmund [19].

In 1932, R.P.Agnew [1] defined the deferred Cesaro mean as a generalization of
Cesàro mean of real (or complex) valued sequence x = (xk) by

(1.1) (Dp,qx)n :=
1

q(n)− p(n)

q(n)∑
k=p(n)+1

xk, n = 1, 2, 3, ...,

where p = {p(n) : n ∈ N} and q = {q(n) : n ∈ N} are the sequences of nonnegative

* Corresponding Author.
Received September 26, 2012; revised May 8, 2013; accepted March 28, 2016.
2010 Mathematics Subject Classification: 40A05, 40C05.
Key words and phrases: statistical convergence, deferred statistical convergence, summa-
bility of sequences, strongly summability.

357
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integers satisfying

(1.2) p(n) < q(n) and lim
n→∞

q(n) = ∞.

R.P. Agnew also showed that the method in (1.1) has some important properties
besides regularity(see for reqularity [11, Theorem 3]).

A sequence x = (xk) is said to be strong Dp,q−convergent to l if

lim
n→∞

1

q(n)− p(n)

q(n)∑
k=p(n)+1

|xk − l| = 0,

holds and it is denoted by
lim

n→∞
xn = l (D [p, q]).

Recall that a sequence x = (xk) is said to be statistically convergent to l if for
every ε > 0,

lim
n→∞

1

n
|{k : k ≤ n, |xk − l| ≥ ε}| = 0,

satisfied where the vertical bars indicate the numbers of elements inside the set and
it is denoted by lim

n→∞
xn = l(S).

There is a natural relationship between statistical convergence and strong
summability of sequences. This relation has been investigated in [3], [4], [12], [13],
[14] and etc.

Definition 1.1 (Deferred Statistical Convergence (DS)) A sequence x = (xk) is
said to be deferred statisticaly convergent to l ∈ R if for every ε > 0,

lim
n→∞

1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}| = 0,

holds and it is denoted by

lim
n→∞

xn = l (DS [p, q]).

It is clear that;
(i) If q (n) = n and p (n) = 0, then Definition 1.1. is coincide with the definition

of statistical convergence,
(ii) If we consider q (n) = kn and p (n) = kn−1 (for any lacunary sequence of

nonnegative integers with kn−kn−1 → ∞ as n→ ∞), then Definition 1.1. is turned
to Lacunary Statistical convergence [9],

(iii) If q(n) = λn and p(n) = 0 (where λn is a strictly increasing sequence of nat-
ural numbers such that lim

n
λn = ∞), then Definition 1.1. is coincide λ−statistical

convergence of sequences which is given by Osikievich [18] and Mursaleen [13].
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2. Inclusion Theorems

Throughout the paper, we consider the sequence of nonnegative natural numbers
p = {p(n) : n ∈ N} and q = {q(n) : n ∈ N} satisfying (1.1). Any other restrictions
on (if needed) p(n) and q(n) will be given in related theorems.

2.1 Comparison of D with DS
In this section, strong deferred Cesàro mean D [p, q] and deferred statistical

convergence DS [p, q] will be compared. It is going to show that these two methods
are equivalent only for bounded sequences.

Theorem 2.1.1. If xn → l (D [p, q]), then xn → l (DS [p, q]).

Proof. Assume xn → l (D [p, q]). For an arbitrary ε > 0, following inequality

1

q(n)− p(n)

q(n)∑
k=p(n)+1

|xk − l|

=
1

q(n)− p(n)

 q(n)∑
k=p(n)+1
|xk−l|≥ε

+

q(n)∑
k=p(n)+1
|xk−l|<ε

 |xk − l| ≥ 1

q(n)− p(n)

q(n)∑
k=p(n)+1
|xk−l|≥ε

|xk − l|

≥ ε
1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}|

holds. After taking limit when n→ ∞, we have

lim
n→∞

1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}| = 0.

Therefore, desired result is obtained. 2

Corollary 2.1.2. If xn → l (n→ ∞), then xn → l (DS [p, q]) .

Remark 2.1.3. The converse of Theorem 2.1.1 and Corollary 2.1.2 are not true,
in general.

For this, consider a sequence x = (xk) as

xk :=

{
k2,

[∣∣∣√q(n)
∣∣∣]−m0 < k ≤

[∣∣∣√q(n)
∣∣∣] , n = 1, 2, 3, ...,

0, otherwise,

where q(n) is a monotone increasing sequence and m0 ̸= 0 is an arbitrary fixed
natural number.

If we consider D[p, q] for the sequence p(n) satisfying

0 < p(n) ≤
[∣∣∣√q(n)

∣∣∣]−m0,
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then for an arbitrary ε > 0 we have

1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − 0| ≥ ε}| = m0

q(n)− p(n)
→ 0,

when n→ ∞, i.e., xk → 0
(
DS [p, q]

)
.

On the other hand,

1

q(n)− p(n)

q(n)∑
p(n)+1

|xk − 0| ≥
m0

([∣∣∣√q(n)
∣∣∣]−m0

)2

q(n)− p(n)
→ m0,

when n → ∞, i.e., (xk) is not D [p, q] convergent to zero. It is also clear that the
sequence does not convergent to zero in usual case.

Let us recall that l∞ is the set of all bounded sequences.

Theorem 2.1.4. If x = (xn) ∈ l∞ and xn → l (DS [p, q]) then xn → l (D [p, q]).
Proof. Suppose that x = (xn) ∈ l∞ and xn → l (DS [p, q]). Under the assumption
on (xn) there exists positive reel number M such that |xn − l| ≤M hods for all n.

So, the inequality

1

q(n)− p(n)

q(n)∑
k=p(n)+1

|xk − l| = 1

q(n)− p(n)

 q(n)∑
k=p(n)+1
|xk−l|≥ε

+

q(n)∑
k=p(n)+1
|xk−l|<ε

 |xk − l|

≤ 1

q(n)− p(n)

M q(n)∑
k=p(n)+1
|xk−l|≥ε

1 + ε

q(n)∑
k=p(n)+1
|xk−l|<ε

1


≤M

1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}|

+ε
1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| < ε}| ,

is hold. From the limit relation we have

lim
n→∞

1

q(n)− p(n)

q(n)∑
k=p(n)+1

|xk − l| = 0.

So, the proof is completed. 2

2.2. Comparison of S with DS [p, q]

In this section, statistical convergence and deferred statistical convergence will
be compared under some restrictions on p(n) or q(n).
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Theorem 2.2.1. If the sequence
{

p(n)
q(n)−p(n)

}
n∈N

is bounded, then xn → l (S) im-

plies xn → l (DS [p, q]).

Proof. Let’s give a note about the sequences of positive natural numbers (an)n∈N
and (bn)n∈N without proof: if lim

n→∞
an = a, a ∈ R and lim

n→∞
bn = +∞, then

lim
n→∞

a
bn

= a.

From the assumption on (xn), the limit relation

(2.1) lim
n→∞

1

n
|{k : k ≤ n, |xk − l| ≥ ε}| = 0,

holds for every ε > 0. Since the sequence q(n) satisfies (1.2), then the sequence{
|{k : k ≤ q(n), |xk − l| ≥ ε}|

q(n)

}
n∈N

is convergent to zero.
Therefore, the inclusion

{k : p(n) < k ≤ q(n), |xk − l| ≥ ε} ⊂ {k : k ≤ q(n), |xk − l| ≥ ε} ,

and the inequality

|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}| ≤ |{k : k ≤ q(n), |xk − l| ≥ ε}| ,

are hold. From the last inequality we have

1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}|

≤
(
1 +

p(n)

q(n)− p(n)

)
.

1

q(n)
|{k : k ≤ q(n), |xk − l| ≥ ε}| ,

and from the limit relation we get

xk → l(DS [p, q]).

So, desired result is obtained. 2

Corollary 2.2.2. Let {q(n)}n∈N be an arbitrary sequence with q(n) < n for all

n ∈ N and
{

n
q(n)−p(n)

}
n∈N

be a bounded sequence. Then, xn → l (S) implies

xn → l (DS [p, q]) .

Remark 2.2.3. The converse of Theorem 2.2.1 is not true even if
{ p(n)

q(n)−p(n)

}
n∈N

is bounded.
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Example 2.2.4. Let us consider p(n) = 2n, q(n) = 4n and a sequence x = (xn) as

xn =

{
n+1
2 , n is odd,

−n
2 , n is even.

It is clear that the assumption of Theorem 2.2.1 is fulfilled and xn →
0 (D[2n, 4n]).

From Theorem 2.1.1 we get xn → 0 (DS[2n, 4n]). But, for an arbitrary small
ε > 0,

lim
n→∞

1

n
|{k : k ≤ n, |xn − 0| ≥ ε}| ̸= 0.

Definition 2.2.5. A method DS[p, q] is called properly deferred when {p(n)} and

{q(n)} satisfy in addition to (1.2) the condition
{

p(n)
q(n)−p(n)

}
is bounded for all n.

Remark 2.2.6. Two properly deferred statistically convergence method must not
be include each other. Let

xn :=

{
k + 1, n = 2k + 1,
−k, n = 2k.

It is clear that xn → 0(DS[2n, 4n]) and xn → 1
2 (DS[2n− 1, 4n− 1]).

Theorem 2.2.7. Let q(n) = n for all n ∈ N. Then, xn → l (DS [p, n]) if and only
if xn → l (S).

Proof. (=⇒) Let us assume that xk → l(DS [p, n]). We shall apply the technique
which was used by Agnew in [1]. Then, for any n ∈ N,

p(n) = n(1) > p(n(1)) = n(2) > p(n(2)) = n(3) > . . . ,

and we may write the set {k ≤ n : |xk − l| ≥ ε} as

{k ≤ n : |xk − l| ≥ ε} =
{
k ≤ n(1) : |xk − l| ≥ ε

}
∪
{
n(1) < k ≤ n : |xk − l| ≥ ε

}
,

and the set
{
1 < k ≤ n(1) : |xk − l| ≥ ε

}
as{

1 < k ≤ n(1) : |xk − l| ≥ ε
}

=
{
k ≤ n(2) : |xk − l| ≥ ε

}
∪
{
n(2) < k ≤ n(1) : |xk − l| ≥ ε

}
,

and the set
{
k ≤ n(2) : |xk − l| ≥ ε

}
as{

k ≤ n(2) : |xk − l| ≥ ε
}
=

{
k ≤ n(3) : |xk − l| ≥ ε

}
∪
{
n(3) < k ≤ n(2) : |xk − l| ≥ ε

}
,

and if this process is continued we obtain{
k ≤ n(h−1) : |xk − l| ≥ ε

}
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=
{
k ≤ n(h) : |xk − l| ≥ ε

}
∪
{
n(h) < k ≤ n(h−1) : |xk − l| ≥ ε

}
for a certain positive integer h > 0 depending on n such that n(h) ≥ 1 and n(h+1) =
0. From the above discussion, the relation

1

n
|{k ≤ n : |xk − l| ≥ ε}|

=

h∑
m=0

n(m) − n(m+1)

n

1

n(m) − n(m+1)

∣∣∣{n(m+1) < k ≤ n(m) : |xk − l| ≥ ε
}∣∣∣

holds for every n. This relation gives that statistical convergency of the sequence
(xn) to l is a linear combination of following sequence.{

1

n(m) − n(m+1)

∣∣∣{n(m+1) < k ≤ n(m) : |xk − l| ≥ ε
}∣∣∣}

m∈N
.

Let us consider the matrix

bn,m :=

{
n(m)−n(m+1)

n , m = 0, 1, 2, . . . , h ,
0, otherwise.

where n(0) := n.
The matrix (bn,m) is satisfied the Silverman Toeplitz theorem (see in [11]). So,

we have

lim
n→∞

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0

since
1

n(m) − n(m+1)

∣∣∣{n(m+1) < k ≤ n(m) : |xk − l| ≥ ε
}∣∣∣ → 0,

when n→ ∞.
(⇐=) Since q(n) = n is satisfied (1.2), then the inverse of the theorem is a

simple consequence of Theorem 2.2.1. 2

Corollary 2.2.8. Assume that {q(n)}n∈N contains almost all positive integers.
Then, xn → l(DS [p, q]) implies xn → l(S).

Proof. Let xn → l(DS [p, q]) for an arbitrary {p(n)} and choose sufficiently large
positive integer m such that the set {q(n)} contains all positive integers which is
greater than m. Then, it can be constructed a sequence (kn) as follows:

k1 = k2 = · · · = km = 1

and for each n > m an index kn such that qkn = n.
It is clear from the construction that (kn) is a monotone increasing sequence. So,

from the assumption xn → l(DS [pkn , qkn ]). Hence, the proof of Corollary follows
from Theorem 2.2.5. 2
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Corollary 2.2.9. Let us assume {q(n)} contains almost all positive integers. If
x = (xn) is a sequence such that xn → l(DS [p, q]) for an arbitrary {p(n)}n∈N and
∆xn = O( 1n ) then xn → l (n→ ∞).

Proof. It is clear from Corollary 2.2.6 and the assumption on q(n) that xn → l(S).
Therefore, if we use [9, Theorem 3] we obtained the proof. 2

2.3. Comparison of DS [p′, q′] with DS [p, q]

In this section, the methods DS [p, q] and DS [p′, q′] will be compared under the
following restriction

(3.1) p(n) ≤ p′(n) < q′(n) ≤ q(n)

for all n ∈ N.

Theorem 2.3.1. Let p′ = {p′(n)}n∈N and q′ = {q′(n)}n∈N be sequences of positive
natural numbers satisfying (3.1) such that the sets

{k : p(n) < k ≤ p′(n)} and {k : q′(n) < k ≤ q(n)}

are finite sets for all n ∈ N. Then, xk → l(DS [p′, q′]) implies xk → l(DS [p, q]).

Proof. Let us consider the sequence x = (xk) such that xk → l(DS [p′, q′]). For an
arbitrary ε > 0, the equality

{k : p(n) < k ≤ q(n), |xk − l| ≥ ε} = {k : p(n) < k ≤ p′(n), |xk − l| ≥ ε}

∪ {k : p′(n) < k ≤ q′(n), |xk − l| ≥ ε} ∪ {k : q′(n) < k ≤ q(n), |xk − l| ≥ ε} ,

and
1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}|

≤ 1

q′(n)− p′(n)
|{k : p(n) < k ≤ p′(n), |xk − l| ≥ ε}|

+
1

q′(n)− p′(n)
|{k : p′(n) < k ≤ q′(n), x |xk − l| ≥ ε}|

+
1

q′(n)− p′(n)
|{k : q′(n) < k ≤ q(n), |xk − l| ≥ ε}| ,

are hold.
On taking limits when n→ ∞, we obtain

lim
n→∞

1

q(n)− p(n)
|{k : p(n) < k ≤ q(n), |xk − l| ≥ ε}| = 0.

This proves our assertion. 2
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Theorem 2.3.2. Let {p(n)}n∈N, {q(n)}n∈N and {p′(n)}n∈N, {q′(n)}n∈N be se-
quences of positive natural numbers satisfying (3.1) such that

lim
n→∞

q(n)− p(n)

q′(n)− p′(n)
= d > 0.

Then, xk → l(DS [p, q]) implies xk → l(DS [p′, q′]).

Proof. It is easy too see that the inclusion

{k : p′(n) + 1 ≤ k ≤ q′(n), |xk − l| ≥ ε} ⊂ {k : p(n) + 1 ≤ k ≤ q(n), |xk − l| ≥ ε}

and the inequality

|{k : p′(n) + 1 ≤ k ≤ q′(n), |xk − l| ≥ ε}| ≤ |{k : p(n) + 1 ≤ k ≤ q(n), |xk − l| ≥ ε}|

are true. So, we have

1

q′(n)− p′(n)
|{k : p′(n) + 1 ≤ k ≤ q′(n), |xk − l| ≥ ε}|

≤ q(n)− p(n)

q′(n)− p′(n)

1

q(n)− p(n)
|{k : p(n) + 1 ≤ k ≤ q(n), |xk − l| ≥ ε}| .

Taking limits as n→ ∞ the desired results is obtained. 2
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