• 제목/요약/키워드: strong convergence theorems

검색결과 104건 처리시간 0.033초

COMPLETE CONVERGENCE AND COMPLETE MOMENT CONVERGENCE THEOREMS FOR WEIGHTED SUMS OF ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Huang, Haiwu;Zhang, Qingxia
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.1007-1025
    • /
    • 2019
  • In the present work, the complete convergence and complete moment convergence properties for arrays of rowwise extended negatively dependent (END) random variables are investigated. Some sharp theorems on these strong convergence for weighted sums of END cases are established. These main results not only generalize the known corresponding ones of Cai [2], Wang et al. [17] and Shen [14], but also improve them, respectively.

CONVERGENCE THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Wu, Changqun;Xu, Sumei
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.661-672
    • /
    • 2009
  • In this paper, we introduce a modified three-step iteration scheme with errors for asymptotically nonexpansive mappings in the framework of uniformly convex Banach spaces. Weak and strong convergence theorems are established.

  • PDF

STRONG CONVERGENCE THEOREM OF FIXED POINT FOR RELATIVELY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Qin, Xiaolong;Kang, Shin Min;Cho, Sun Young
    • 충청수학회지
    • /
    • 제21권3호
    • /
    • pp.327-337
    • /
    • 2008
  • In this paper, we prove strong convergence theorems of Halpern iteration for relatively asymptotically nonexpansive mappings in the framework of Banach spaces. Our results extend and improve the recent ones announced by [C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2400-2411], [X. Qin, Y. Su, Strong convergence theorem for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965] and many others.

  • PDF

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Jung, Jong-Soo
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.381-393
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finding a common zero of a finite family accretive operators are established in a reflexive and strictly Banach space having a uniformly G$\hat{a}$teaux differentiable norm. The main theorems supplement the recent corresponding results of Wong et al. [29] and Zegeye and Shahzad [32] to the viscosity method together with different control conditions. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for finite nonexpansive mappings to the case of finite pseudocontractive mappings.

HALPERN TSENG'S EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES INVOLVING SEMISTRICTLY QUASIMONOTONE OPERATOR

  • Wairojjana, Nopparat;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.121-140
    • /
    • 2022
  • In this paper, we study the strong convergence of new methods for solving classical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-continuous operators in a real Hilbert space. Three proposed methods are based on Tseng's extragradient method and use a simple self-adaptive step size rule that is independent of the Lipschitz constant. The step size rule is built around two techniques: the monotone and the non-monotone step size rule. We establish strong convergence theorems for the proposed methods that do not require any additional projections or knowledge of an involved operator's Lipschitz constant. Finally, we present some numerical experiments that demonstrate the efficiency and advantages of the proposed methods.

CONVERGENCE THEOREMS OF IMPLICIT ITERATION PROCESS WITH ERRORS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • 제28권1호
    • /
    • pp.63-71
    • /
    • 2012
  • The aim of this article is to study an implicit iteration process with errors for a finite family of non-Lipschitzian asymptotically non expansive mappings in the intermediate sense in Banach spaces. Also we establish some strong convergence theorems and a weak convergence theorem for said scheme to converge to a common fixed point for non Lipschitzian asymptotically nonexpansive mappings in the intermediate sense. The results presented in this paper extend and improve the corresponding results of [1], [3]-[8], [10]-[11], [13]-[14], [16] and many others.

WEAK AND STRONG CONVERGENCE CRITERIA OF MODIFIED NOOR ITERATIONS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Banerjee, Shrabani;Choudhury, Binayak Samadder
    • 대한수학회보
    • /
    • 제44권3호
    • /
    • pp.493-506
    • /
    • 2007
  • In this paper weak and strong convergence theorems of modified Noor iterations to fixed points for asymptotically nonexpansive mappings in the intermediate sense in Banach spaces are established. In one theorem where we establish strong convergence we assume an additional property of the operator whereas in another theorem where we establish weak convergence assume an additional property of the space.

WEAK AND STRONG CONVERGENCE OF THREE-STEP ITERATIONS WITH ERRORS FOR TWO ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.325-336
    • /
    • 2008
  • In this paper, we prove the weak and strong convergence of the three-step iterative scheme with errors to a common fixed point for two asymptotically nonexpansive mappings in a uniformly convex Banach space under a condition weaker than compactness. Our theorems improve and generalize some previous results.

  • PDF

STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN q-UNIFORMLY SMOOTH BANACH SPACES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • 제20권2호
    • /
    • pp.225-237
    • /
    • 2012
  • In this paper, we introduce a new iterative scheme to investigate the problem of nding a common element of nonexpansive mappings and the set of solutions of generalized variational inequalities for a $k$-strict pseudo-contraction by relaxed extra-gradient methods. Strong convergence theorems are established in $q$-uniformly smooth Banach spaces.