• Title/Summary/Keyword: stress function

Search Result 3,099, Processing Time 0.029 seconds

Modeling of Welding Heat Input for Residual Stress Analysis (용접 잔류응력 해석을 위한 Heat Input Model 개발)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.34-47
    • /
    • 1993
  • Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-16
    • /
    • 1996
  • Based on many experimental results on fine silica sands, the strength relation between triaxial and plane strain tests is expressed as a function of both density and mean effective principal stress at failure. Stress ratio of mean normal stress to deviatoric stress at failure is a well defined function of shear angle of friction, This ratio decreases with increasing shear angle of friction. Intermediate principal stress is also expressed in terms of major and minor principal stresses and a relatively good agreement between theoretical and observed angles of failure plane in plane strain test is confirmed.

  • PDF

Proper Shape Fuction for the Contact Stress in the Soil-Plate Interaction Problems (지반과 구형 평판구조사이의 접촉응력에 적합한 형상함수)

  • 고만기
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.89-97
    • /
    • 1993
  • General formulation to analyse the rectangular thin plate on a soil medium by energy method is developed. In the problem, Boussinesque's formular needs to be integrated after assuming the contact stress distribution. Two different functions, i.e., power series and Chebychev polynomials are used to approximate the contact stress distribution. It was found that Chebychev polynomials are better function to describe the contact stress than power series. Chebychev polynomials considering stress singularity around plate boundary is recommended as the desirable shape function for future research.

  • PDF

An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina (다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

Determination of Stress Intensity Factors for Embedded Elliptical Crack in Turbine Rotor (터빈축차내에 내재된 타원균열의 응력세기계수 결정)

  • 이강용;김종성;하정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1229-1242
    • /
    • 1995
  • The thermal shock stress intensity factors of semi-elliptical surface crack in finite plate and the stress intensity fractors of embedded elliptical crack in turbine rotor is determined by means of Vainshtok weight function method. In case of semi-elliptical surface crack, the solution is compared with previous solution. The stress intensity factor for embedded elliptical crack in turbine rotor loaded by centrifugal and thermal loading is also determined. In this case, the value of stress intensity factor is larger at crack contour near internal radius surface and is almost constant at the crack contour farther from internal radius surface.

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

Deformation of a rectangular plate with an arbitrarily located circular hole under in-plane pure shear loading

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.351-363
    • /
    • 2016
  • Exact solutions for stresses, strains, displacements, and the stress concentration factors of a rectangular plate perforated by an arbitrarily located circular hole subjected to in-plane pure shear loading are investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop stresses, strains, and displacements occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the hoop stresses and the stress concentration factors from the present study and those from a rectangular plate with a circular hole under uni-axial and bi-axial uniform tensions and in-plane pure bending moments on two opposite edges.

On Estimating of Kullback-Leibler Information Function using Three Step Stress Accelerated Life Test

  • Park, Byung-Gu;Yoon, Sang-Chul;Cho, Ji-Young
    • International Journal of Reliability and Applications
    • /
    • v.1 no.2
    • /
    • pp.155-165
    • /
    • 2000
  • In this paper, we propose some estimators of Kullback- Leibler Information functions using the data from three step stress accelerated life tests. This acceleration model is assumed to be a tampered random variable model. Some asymptotic properties of proposed estimators are proved. Simulations are performed for comparing the small sample properties of the proposed estimators under use condition of accelerated life test.

  • PDF

The Stress Field in a Body Caused by the Tangential Force of a Rectangular Patch on a Semi-Infinite Solid

  • Cho, Yong-Joo;Kim, Tae-Wan;Lee, Mun-Ju
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • The stress field in a body caused by the tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using a potential function. The validity of the results of this study was preyed by Saint-Venant's principle in the remote region and by the superposition of point loads in the vicinity of the surface.

  • PDF

Evaluation of Stress Intensity Factors for an Electrostrictive Crack with an Electric Yielding Zone (전기적 항복영역을 갖는 전왜균열에 대한 응력강도계수 계산)

  • 범현규;정은도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.469-472
    • /
    • 2000
  • a crack with electrically impermeable surfaces in an electrostrictive material subjected to uniform electric loading is analysed. A strip yield zone model is employed to investigate the effect of electric yielding on stress intensity factor. complete forms of electric fields and elastic fields for the crack are derived by using complex function theory. /the stress intensity factors are obtained based on the strip yield zone model.

  • PDF