• Title/Summary/Keyword: stress amplitude

Search Result 535, Processing Time 0.026 seconds

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

Behaviour of Nak-dong River Sand on Cyclic Stress History (낙동강 모래의 반복응력이력에 의한 거동)

  • 김영수;박명렬;김병탁;이상복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

Evaluation of Mechanical Property and Fatigue Damage in A Practical Superconducting Cable for Magnet (초전도 마그네트용 실용 초전도 복합선재의 기계적 특성 및 피로손상 평가에 관한 연구)

  • Sin, Hyeong-Seop;O, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.761-768
    • /
    • 2000
  • In order to investigate how the fatigue damage effects on the critical properties of superconductor, a fatigue test at room temperature and an Ic measurement test at 4.2K were carried out in this study, respectively, using a 9 strand Cu-Ni/NbTi/Cu composite cable. Through the fatigue test of a 9 strand Cu-NUNbTi/Cu composite cable, a conventional S-N curve was plotted even though there was a possibility of fretting among strands. It was found that the maximum stress corresponding to the inflection point on the S-N curve obtained was nearly the same value as the yielding strength of cable obtained from the static tensile test. However, the effect of cabling in multi-strands superconducting cable on the fatigue strength was not noticeable. The critical current(Ic) measurement was carried out at 4.2K in a NbTi strand out of the fatigued cable. It showed a degradation of lc at high stress amplitude regions over 380NTa, and the degradation became significant as the applied stress amplitude increased.

The Fatigue Cumulative Damage and Life Prediction of GFRP under Random Loading (랜덤하중하의 GFRP의 피로누적손상거동과 피로수명예측)

  • Kim, Jeong-Gyu;Sim, Dong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3892-3898
    • /
    • 1996
  • In this study, the prediction of the fatigue life as well as the extimation of the characteristics of fatigue cumulative damage on GFRP under random loading were performed. The constant amplitude tests and the ramdom loading test were carried on notched GFRP specimens with a circular hole. Random waves were generated with a micro-computer and had wide band spectra. Since it is useful that the prediction of fatigue life ot the given load sequences is based on S-N curves under constant amplitude loading, the estimation of equivalent stress is done on every random waves. The equivalent stress wasat first estimated by Miner's rule and then by the proposed model which was based on Hashin-Rotem's comulative damage theory regarding nonlinear fatigue cumulative damage behavior. The fatigue lives were predicted from each equivalent stress evaluated. And each predicted fatigue llife was compared with experimental results. The number of cycles of random loads were counted by mean-cross counting method. The reuslts showed that the fatigue life predicted by proposed model was correlated well with the experimental results in comparison with Miner's model.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Failure Analysis of Connecting Rod at Small End (커넥팅로드 소단부 파단의 해석)

  • 민동균;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

Full-Scale Measurement of Pure Car Carrier (자동차 운반선에 대한 실선 계측)

  • Jin-S.,Park;Oi-H.,Kim;Zae-K.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.46-62
    • /
    • 1989
  • This paper presents the results of full-scale structural measurements of 4,800 unit pure car carriers "HYUNDAI NO.103" and "HYUNDAI NO.105" on one voyage respectively for each ship, especially in order to investigate the local strength of partial bulkhead above free-board deck. With the measured data, the short-term frequency analyses have been performed. The results show that the wave-induced stresses follow, on the whole, well the Rayleigh distribution. In addition, it has been found from the measured data that transverse local stresses at bulkhead section have a very close relation with the acceleration in athwartship direction. Finally, the long-term analysis has been attempted by using the following two statistical distributions mainly in order to estimate the maximum stress amplitude at the corners of partial bulkhead. 1) Exponential distribution of cycles of stress amplitude 2) Double exponential distribution of extreme values of stress amplitude for each short-term analysis The results of these two cases show a good agreement with each other. For example, the estimated maximum stress amplitude for 10 years at port-side corner of Fr. 132 partial bulkhead is $2125kg/cm^2$ for the first case and $2170kg/cm^2$ for the second case just based on the measured data.

  • PDF