DOI QR코드

DOI QR Code

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Park, Yeun Chul (Institute of Construction and Environmental Engineering, Seoul National University) ;
  • Kim, Ho-Kyung (Department of Civil and Environmental Engineering, Seoul National University)
  • Received : 2017.12.15
  • Accepted : 2018.06.06
  • Published : 2018.11.30

Abstract

Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

Keywords

Acknowledgement

Supported by : Ministry of Land, Infrastructure and Transportation of the Korean

References

  1. Ahn, S. S. (2014). KEC's current status and strategies of bridges. In Proceeedings of 2014 Korea concrete institute conference (pp. 11-17) (in Korean).
  2. ASCE. (2017). ASCE 2017 infrastructure report card. www.infrastructurereportcard.org. Accessed 30 Sept 2017.
  3. Barsom, J. M., & Rolfe, S. T. (1999). Fracture and fatigue control in structures: Applications of fracture mechanics (3rd ed.). West Conshohocken, PA: ASTM.
  4. Bowness, D. & Lee, M. M. K. (2002). Fracture mechanics assessment of fatigue cracks in off shore tubular structures. Off shore technology report 2000/077. HSE.
  5. BSI. (2015). BS 7910: Guide to methods for assessing the acceptability of flaws in metallic structures. London: British Standard Institute.
  6. Chen, N.-Z., Wang, G., & Guedes Soares, C. (2011). Palmgren-Miner’s rule and fracture mechanics-based inspection planning. Engineering Fracture Mechanics, 78(18), 3166-3182. https://doi.org/10.1016/j.engfracmech.2011.08.002
  7. Engesvik, K. M., & Moan, T. (1983). Probabilistic analysis of the uncertainty in the fatigue capacity of welded-joints. Engineering Fracture Mechanics, 18(4), 743-762. https://doi.org/10.1016/0013-7944(83)90122-4
  8. FHWA. (2012). Bridge inspector's reference manual. Arlington: Federal Highway Administration.
  9. Hwang, E. S., Nguyen, T. H., & Kim, D. Y. (2013). Live load factors for reliability-based bridge evaluation. Ksce Journal of Civil Engineering, 17(3), 499-508. https://doi.org/10.1007/s12205-013-0561-0.
  10. JCSS. (2011). JCSS Probabilistic model code. Joint Committee on Structural Safety. www.jcss.byg.dtu.dk.
  11. Leander, J., & Al-Emrani, M. (2016). Reliability-based fatigue assessment of steel bridges using LEFM-A sensitivity analysis. International Journal of Fatigue, 93, 82-91. https://doi.org/10.1016/j.ijfatigue.2016.08.011
  12. Lee, Y. J., & Cho, S. (2016). SHM-based probabilistic fatigue life prediction for bridges based on FE model updating. Sensors (Basel), 16(3), 317. https://doi.org/10.3390/s1603 0317.
  13. Lukic, M., & Cremona, C. (2001). Probabilistic assessment of welded joints versus fatigue and fracture. Journal of Structural Engineering-Asce, 127(2), 211-218. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(211)
  14. Maljaars, J., & Vrouwenvelder, A. C. W. M. (2014). Probabilistic fatigue life updating accounting for inspections of multiple critical locations. International Journal of Fatigue, 68, 24-37. https://doi.org/10.1016/j.ijfatigue.2014.06.011.
  15. Moan, T., & Song, R. X. (2000). Implications of inspection updating on system fatigue reliability of off shore structures. Journal of Off shore Mechanics and Arctic Engineering-Transactions of the Asme, 122(3), 173-180. https://doi.org/10.1115/1.12866 01.
  16. Newman, J. C., & Raju, I. S. (1981). An empirical stress-intensity factor equation for the surface crack. Engineering Fracture Mechanics, 15(1-2), 185-192. https://doi.org/10.1016/0013-7944(81)90116-8.
  17. Norris, S. N., & Fisher, J. W. (1981). The fatigue behaviour of welded web attachments. Journal of Constructional Steel Research, 1(2), 27-38. https://doi.org/10.1016/0143-974X(81)90030-4
  18. Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85(4), 528-533. https://doi.org/10.1115/1.3656900
  19. Park, J. Y., & Kim, H. K. (2014). Fatigue life assessment for a composite box girder bridge. International Journal of Steel Structures, 14(4), 843-853. https://doi.org/10.1007/s1329 6-014-1215-x.
  20. Riahi, H., Bressolette, P., Chateauneuf, A., Bouraoui, C., & Fathallah, R. (2011). Reliability analysis and inspection updating by stochastic response surface of fatigue cracks in mixed mode. Engineering Structures, 33(12), 3392-3401. https://doi.org/10.1016/j.engstruct.2011.07.003.
  21. Righiniotis, T. D., & Chryssanthopoulos, M. K. (2004). Fatigue and fracture simulation of welded bridge details through a bi-linear crack growth law. Structural Safety, 26(2), 141-158. https://doi.org/10.1016/S0167-4730(03)00038-9.
  22. Soliman, M., Frangopol, D. M., & Kim, S. (2013). Probabilistic optimum inspection planning of steel bridges with multiple fatigue sensitive details. Engineering Structures, 49, 996-1006. https://doi.org/10.1016/j.engstruct.2012.12.044
  23. Yamada, K., & Nagatsu, S. (1989). Evaluation of scatter in fatgue life of welded details using fracture mechanics. Structural Engineering/Earthquake Engineering, 6(1), 13-21.