• Title/Summary/Keyword: stream in urban area

Search Result 256, Processing Time 0.026 seconds

Status of Riparian Vegetation and Implication for Restoration in the Seunggi Stream, Incheon (인천 승기천에서 하안식생의 현황과 복원 방안)

  • Cho, Kang-Hyun;Kim, Jaai;Lee, Hyo Hye Mi;Kwon, Oh Byung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.62-73
    • /
    • 2001
  • The riparian environments of urban streams in Korea have been disturbed through the channelization for flood control and artificial land use as well as water pollution and flow decrease due to industrialization and urbanization. The flora and vegetation structure were investigated and an implication of stream restoration was discussed for the conservation of biodiversity in the riparian area of the Seunggi stream in Incheon. Naturalized plants and ruderal plants were widely distributed in the riparian area which was disturbed from cultivating, trampling, dumping etc. Submerged and floating hydrophytes were not found in the stream due to channelization and water pollution. Some halophytes were remained in downstream and reservoir after reclamation and embankment. The communities of Humulus japonicus, Panicum dichotomiflorum, Digitaria sanguinalis, Artemisia montana, Amaranthus retroflexus, and Aster pilosus were distributed in the disturbed area of bank slope and floodplain in the stream. As a natural potential vegetation, Phragmites australis in the wet meadow, Typha latifolia, Typha angustifolia, Oenanthe javanica, Persicaria thunbergii, and Penthorum chinense in the marsh, and Salix babylonica and Salix matsudana for. tortuosa in the woodland appeared in the floodplain. The topography in the stream played an important role on the distribution of riparian vegetation in the Seunggi stream. Appropriate methods for conservation and restoration of the riparian ecosystems must be planned on the basis of the actual vegetation in the disturbed urban stream.

  • PDF

An Application Analysis of Vegetation Permission Map in Urban Stream in Korea (국내 도시하천에 대한 식수허가지도의 적용성 검토)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.47-55
    • /
    • 2005
  • In order to design and manage the urban streams, the change of hydraulic characteristics by vegetation must be analyzed clearly. Planting criteria of vegetation in a urban stream were investigated and the design method of vegetation permission map was analyzed in this study. In addition, variations of water level due to vegetation are calculated by quasi two dimensional numerical model, HEC-RAS model and FESWMS model. Joongrang stream(Gunja bridge${\sim}$Jangan bridge reach) was selected as the case study stream. According to the criteria of vegetation, it is decided that vegetation density was $0.5{\sim}1.0$ tree/ha for selected tall tree in right floodplain and shrubs can be planted in the right and left floodplain area except the important hydraulic structures site. The selected shrubs planting simulations with three models show that water level in selected floodplain area increase approximately 12cm for the 100 year return period flood. The applicability of vegetation permission map in Korean urban stream was analyzed in this paper.

The Study on the Development of Flood Prediction and Warning System at Ungaged Coastal Urban Area - On-Cheon Stream in Busan - (미계측 해안 도시 유역의 홍수예경보 시스템 구축 방법 검토 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun-Suk;Park, Yong-Woon;Hong, Il-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.447-458
    • /
    • 2007
  • In this study, the coastal urban flood prediction and warning system based on HEC-RAS and SWMM were investigated to evaluate a watershed of On-Cheon stream in Busan which has characteristics of costal area cased by flooding of coastal urban areas. The basis of this study is a selection of various geological data from the numerical map that is a watershed of On-Cheon stream and computation of hydrologic GIS data. Thiessen method was used for analyzing of rainfall on the On-Cheon stream and 6th regression equation, which is Huff's Type II was time-distribution of rainfall. To evaluate the deployment of flood prediction and warning system, risk depth was used on the 3 selected areas. To find the threshold runoff for hydraulic analysis of stream, HEC-RAS was used and flood depth and threshold runoff was considered with the effect of tidal water level. To estimate urban flash flood trigger rainfall, PCSWMM 2002 was introduced for hydrologic analysis. Consequently, not only were the criteria of coastal urban flood prediction and warning system decided on the watershed of On-Cheon stream, but also the deployment flow charts of flood prediction and warning system and operation system was evaluated. This study indicates the criteria of flood prediction and warning system on the coastal areas and modeling methods with application of ArcView GIS, HEC-RAS and SWMM on the basin. For the future, flood prediction and warning system should be considered and developed to various basin cases to reduce natural flood disasters in coastal urban area.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

Floral Change in the Urban Stream after Natural Stream Work (자연형 하천공사 후 도시하천의 식물상 변화)

  • 신동훈;노태성;오휘영;이규석
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.67-73
    • /
    • 2003
  • Natural stream work has been implemented recently to improve the urban stream environment in Korean cities. Many plants planted in the early work have not survived because they were not suited to the site and therefore failed to adapt to the riparian environment. The objective of this study is to investigate the floral change at the riparian environment after completion of the natural stream work by comparing the differences between planted species during the work and the current species at the study site. The study site was the stream area between Yeongdohng 2 bridge and Yeongdohng 3 bridge at Yangjae-cheon Stream, Gangnam-ku, Seoul, which was the prototype site of G-7 project of the Ministry of Environment in Korea. The following conclusions were derived after doing this study: Among the 50 species planted during the work, 23 species survived in the stream zone, while 27 species did not. The species that did not survive were ornamental plants that were not appropriate for the riparian environment. Among the 144 species which appeared naturally, 77 species(53.5%) were annuals and perennials, which means the study site is still in ecological disturbance and does not have a stable status ecologically. Thus, it is necessary to select the plant species that can survive in the disturbed riparian environment.

Analysis of Runoff Reduction Characteristics According to Alloted Detention System in Urban Area (도시유역의 분담저류 방식에 따른 유출저감특성 분석)

  • Kim, Ji -Tae;Kwon, Wook;Kim, Young-Bok;Kim, Soo-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.915-922
    • /
    • 2006
  • National Emergency Management Agency is planning a flood disaster mitigation system in urban area. This research is about analysis of runoff reduction efficiency of the alloted detention system which is one of flood disaster mitigation systems in urban area. The alloted detention system is composed of small to middle size detention facilities located in up and middle stream of urban basin. To analyze runoff reduction efficiency of alloted detention system, basic runoff analysis in test area has been carried out and runoff characteristics with size and locations of detention facilities has been simulated. The results of simulation are showing that alloted detention system can reduce the discharge of main stream and detention facilities' size and locations are major parameters of runoff reduction efficiency. It is concluded that alloted detention system can be a useful method in urban area's flood disaster mitigation and can secure safety against flood damages in urban areas.

A Study on Zoning and Management of Conservation Area and Ecological Management Plan on Urban Stream Using Marxan - A Case of Jungrangcheon(Stream) in Seoul - (Marxan을 이용한 도시하천의 보전지역 설정 및 생태적 관리방안 연구 - 서울시 중랑천을 대상으로 -)

  • Yun, Ho-Geun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.16-27
    • /
    • 2020
  • This study presented a plan for the establishment of conservation areas and the ecological management of those areas in the stream based on the Marxan with Zones Program for a Jungrangcheon Stream in downtown Seoul. The application of the Marxan with Zones Program included the stage of planning unit setting, application of mapping indices, numerical correction for repetitive analysis, creation of scenario-specific optimizations through analysis, analysis of sensitivity by scenario, review, and the selection of optimal plans among the scenarios considered. As a result of the establishment of a conservation area near Jungrangcheon Stream, which has several watershed areas, including an upper-middle-class wildlife protection zone, which was previously designated and managed as a conservation area, and the migratory protection zone downstream of Jungrangcheon Stream were designated as key conservation areas. A number of wild birds were observed in the upper reaches of Jungrangcheon Stream, adjacent to the forests of Suraksan Mountain and Dobongsan Mountain. The downstream area is a habitat for migratory birds that travel along the stream and the adjacent river ecosystem, including the Hangang River confluence and Cheonggyecheon Stream confluence. Therefore, the upper and lower reaches of Jungrangcheon Stream are connected to forest ecosystems such as Dobongsan Mountain, Suraksan Mountain, and Eungbongsan Mountain, as well as urban green area and river ecosystems in the basin area, which influence the establishment of conservation areas. This study verified the establishment and evaluation of existing conservation areas through the Marxan with Zones Program during the verification of the conservation areas and was presented as in-stream management and basin management method to manage the basin areas derived from core conservation areas determined through the program.

Determining Characteristics of Groundwater Inflow to the Stream in an Urban Area using Hydrogeochemical Tracers (222Rn and Major Dissolved Ions) and Microbial Community Analysis (수리지화학적 추적자(222Rn, 주요용존이온)와 미생물 군집 분석을 통한 도심 지역 하천에서의 지하수 유출 특성 평가)

  • Oh, Yong Hwa;Kim, Dong-Hun;Lee, Soo-Hyoung;Moon, Hee Sun;Cho, Soo Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2
    • /
    • pp.16-23
    • /
    • 2020
  • In this work, 222Rn activity, major dissolved ions, and microbial community in ground- and surface waters were investigated to characterize groundwater inflow to the stream located in an urban area, Daejeon, Korea. The measured 222Rn activities in groundwater and stream water ranged from 136 to 231 Bq L-1 and 0.3 to 48.8 Bq L-1, respectively. The spatial distributions of 222Rn activity in the stream strongly suggested groundwater inflow to the stream. The change of geochemical composition of the stream water indicated the effect of groundwater discharge became more pronounced as the stream flows downstream. Furthermore, microbial community composition of the stream water had good similarity to that of groundwater, which is another evidence of groundwater discharge. Although groundwater inflow could not be estimated quantitatively in this study, the results can provide useful information to understand interactions between groundwater and surface water, and determine hydrological processes governing groundwater recharge and hydrogeological cycles of dissolved substances such as nutrients and trace metals.

Estimation of Pollution Load in Anyang Stream Basin Using GIS (GIS를 이용한 안양천 유역의 오염부하량 산정)

  • 최종욱;유병태;이민환;김건흥
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • In the estimation of pollution load in water basin, a data information has generally used from surveyed data. A Geographic Information System(GIS) was adopted to evaluate the amount of pollution load in Anyang stream basin which is one of the major tributaries in the Han river flows through urban area. The digital maps of administrative boundary, stream network, sub-basin, soil type, and land-use for spatial data as well as attribute data were generated. And the database of sub-basins and pollution source was structured to estimate pollution load in Anyang stream basin by an Arc/Info GIS.As the results of this investigation, the pollution load of Mokgam-chun sub-basin was the highest amount. And that of Hagi-chun sub-basin and the fourth main stream sub-basin were also high amount in Anyang stream basin. In general, it was found that the pollution load generated from the upstream area in Kyunggi province was higher than that from downstream area in Seoul. Because the point and non-point source pollution load played very significant role in the deterioration of the water quality of the Anyang stream, an integrated approach to water quality management should be required for the sub-basins of high pollution load amount.

  • PDF

Interaction between Groundwater and Surface Water in Urban Area (도시지역의 지하수와 하천수의 교류량)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.919-927
    • /
    • 2008
  • Flow exchanges between stream and groundwater are assessed on urban streams in Daegu, Korea. Two rivers and 25 streams with the total length of 240 km run through the study area. The interaction between surface water and groundwater was estimated using Darcy's method. The study was conducted by dividing the basin into 16 smaller watersheds, and for comparison purposes. Groundwater level, surface water level, hydraulic conductivity, thickness of aquifer, and the distance between the well and the nearest stream were used for quantifying the interaction. To investigations the groundwater interaction in the watersheds, the amount of effluent seepage from groundwater to the stream, the amount of influent seepage from the stream to groundwater, and the amount of annual interaction between surface water and groundwater were computed. The total amount of effluent seepage from the groundwater to stream in the basin was approximately $72{\times}10^6m^3/year$. The total amount of influent seepage from the stream to groundwater was approximately $35{\times}10^6m^3/year$. It appeared that the total amount of annual interaction between surface water and groundwater was approximately $108{\times}10^6m^3/year$ and the total groundwater flow balance was approximately $37{\times}10^6m^3/year$. The annual amount of interaction between the surface water and groundwater was the largest in the Goryung Bridge Basin($29{\times}10^6m^3/year$) and the least in the Dalchang Dam Basin($0.2{\times}10^6m^3/year$). The results show that flow exchanges between stream and groundwater are very active and that there are significant difference among the smaller watersheds. Finally, the results indicate that it is necessary to further investigate to more precisely understand the interaction characteristics between surface water and groundwater in urban areas.