• 제목/요약/키워드: strain measurement sensor

검색결과 256건 처리시간 0.032초

D-최적 실험 설계 기반 최적 센서 배치 및 모델 확장 기법을 이용한 하중 추정 (Load Recovery Using D-Optimal Sensor Placement and Full-Field Expansion Method)

  • 변성주;이승재;부승환
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.115-124
    • /
    • 2024
  • To detect and prevent structural damage caused by various loads on marine structures and ships, structural health monitoring procedure is essential. Estimating loads acting on the structures which are measured by sensors that are mounted properly are crucial for structural health monitoring. However, attaching an excessive number of sensors to the structure without consideration can be inefficient due to the high costs involved and the potential for inducing structural instability. In this study, we introduce a method to determine the optimal number of sensors and their optimized locations for strain measurement sensors, allowing for accurate load estimation throughout the structure using model expansion method. To estimate the loads exerted on the entire structure with minimal sensors, we construct a strain-load interpolation matrix using the strain mode shapes of the finite element (FE) model and select the optimal sensor locations by applying D-Optimal Design and the row exchange algorithm. Finally, we estimate the loads exerted on the entire structure using the model expansion method. To validate the proposed method, we compare the results obtained by applying the optimal sensor placement and model expansion method to an FE model subjected to arbitrary loads with the loads exerted on the entire FE model, demonstrating efficiency and accuracy.

직물센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 효과 (Effect of Fabric Sensor Type and Measurement Location on Respiratory Detection Performance)

  • 조현승;양진희;이강휘;김상민;이혁재;이정환;곽휘권;고윤수;채제욱;오수현;이주현
    • 감성과학
    • /
    • 제22권4호
    • /
    • pp.97-106
    • /
    • 2019
  • 본 연구의 목적은 직물형 스트레인게이지 센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 영향을 연구하는 것이다. 본 연구에서는 호흡 신호 측정을 위하여 두 가지 종류의 센서를 구현하고 이를 밴드에 부착하여 호흡신호를 검출하였다. 20대의 건강한 남성 8명을 대상으로 호흡 측정 밴드 2종을 순차적으로 피험자에게 착용하도록 하였다. 피험자가 편안하게 서 있는 상태에서 분당 15회의 호흡을 동기화시켰다. 30초 동안의 호흡 신호를 측정하고 10초간 휴식을 취하도록 한 후 다시 30초 동안의 호흡 신호를 반복 측정하였다. 측정 위치는 흉부와 복부에서 각각 측정하였다. 또한 동작 상태에서의 호흡 측정 성능을 검증하기 위하여 피험자를 80SPM의 속도로 제자리에서 걷게 하고 이 때의 호흡 신호를 동일한 실험 방법으로 측정하였다. 한편 참조 신호를 획득하기 위해 'BIOPAC Systems, Inc.'의 SS5LB를 착용하게 한 후 동시에 측정하였다. 센서의 종류, 측정 위치, 동작 상태의 총 8개 조합의 집단 간 측정 성능의 차이를 검증하기 위해서 SPSS 24.0을 사용하여 Kruskal-Wallis test와 Bonferroni 사후검정을 실행하였다. 또한 센서 종류, 측정 위치, 동작 상태에 따라 각각 차이가 있는지를 분석하기 위해 Wilcoxon test를 실시하였다. 분석 결과 동작 상태와 관계없이 CNT기반의 직물센서를 통해 흉부에서 호흡 신호를 측정 했을 때 호흡 신호 검출 성능이 가장 우수한 것으로 나타났다. 본 연구의 결과를 기반으로 향후에는 야외 환경에서 또는 일상활동 중에도 동작에 방해 없이 다양한 생체신호를 실시간으로 모니터링 할 수 있는 가슴벨트형 웨어러블 플랫폼을 개발하고자 한다.

보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현 (Digital Twin Model of a Beam Structure Using Strain Measurement Data)

  • 한만석;신수봉;문태욱;김다운;이종한
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

다자유도 탄소섬유판 힘/토크 센서 개발 (Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor)

  • 이동혁;김민규;조남규
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.170-177
    • /
    • 2012
  • A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a ${\mu}N$ level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 kg (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.

PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정 (Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors)

  • 고은수;김동건;김인걸;우경식;김종헌
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.238-245
    • /
    • 2018
  • 수압램 현상은 전투용 항공기의 주요 전투 손상 중 하나이며, 항공기 기체 생존성 평가에 중요한 영향을 미친다. 수압램 효과는 유체-구조물간의 상호관계를 통하여 나타나며, 구조물의 동적 변형률을 측정하여 파손 거동 및 파손 여부를 확인할 수 있다. 본 논문에서는 수압램 현상을 모사할 수 있는 수압램 시험 장치를 이용하여 수압램에 의한 복합재 T-Joint의 파손 시험을 수행하였다. 또한 계측기기의 입력 정전용량과 시간 상수 확인을 위해 PVDF 센서 보정 시험을 수행하였다. 복합재 T-Joint에 스트레인 게이지와 전하증폭기를 사용하지 않은 PVDF 센서를 부착하여 수압램 현상에 의한 복합재 T-Joint의 동적 변형률을 측정하였다. PVDF 센서와 스트레인 게이지의 동적 변형률을 이용하여 복합재 T-Joint의 파손 거동 및 파손 여부를 확인하였다.

Vibration Measurement and Flutter Suppression Using Patch-type EFPI Sensor System

  • Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.17-26
    • /
    • 2005
  • An optical phase tracking technique for an extrinsic Fabry-Perot interferometer (EFPI) is proposed in order to overcome interferometric non-linearity. Basic idea is utilizing strain-rate information, which cannot be easily obtained from an EFPI sensor itself. The proposed phase tracking system consists of a patch-type EFPI sensor and a simple on-line phase tracking logic. The patch-type EFPI sensor comprises an EFPI and a piezoelectric patch. An EFPI sensor itself has non-linear behavior due to the interferometric characteristics, and a piezoelectric material has hysteresis. However, the composed patch-type EFPI sensor system overcomes the problems that can arise when they are used individually. The dynamic characteristics of the proposed phase tracking system were investigated, and then the patch-type EFPI sensor system was applied to the active suppression of flutter, dynamic aeroelastic instability, of a swept-back composite plate structure. The proposed system has effectively reduced the amplitude of the flutter mode, and increased flutter speed.

편심하중 요소를 활용한 방수형 다분력 검력계 개발 (Development of a Multi-Component Waterproof Type Force Sensor Devised with Column Elements Under Eccentric Load)

  • 김효철;신창환;유성선;함연재
    • 대한조선학회논문집
    • /
    • 제61권3호
    • /
    • pp.200-207
    • /
    • 2024
  • A multi-component force sensor has been developed to measure force and moment components in high-speed flow media for submerged models. The size of the test model is determined based on the Reynolds number of the model at the test speed and expected blockage effect. A two-component force sensor unit has been created by assembling pairs of column elements arranged symmetrically under an eccentric load. The six-component force sensor is constructed with symmetric arrangements of two-component force sensor units in a rectangular plane. The signals generated from the strain gauges attached to the surface of the elements can be converted into force signals. The performance of the waterproof six-component force sensor has been evaluated through calibration. A simplified interference decomposition procedure has been introduced to increase the accuracy of measurement.

다축 힘센서에서 힘감지 오차의 전파 (Force-Sensing Error Propagation in Multi-Axis Force Sensors)

  • 강철구
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2688-2695
    • /
    • 2000
  • In multi-axis force sensor, compliance matrices representing structural behaviour of internal sensor bodies play an important role in decoupled sensing and accuracy, Recently, error propagation through compliance matrices has been studied via approximation approach. However the upper bound of measured force error has not been known. In this paper, error propagation in force sensing is analysed in a unified way when both strain measurement error and compliance matrix error exist, and the upper bound of the measured force error is derived exactly(not approximately). The analysis is examined through a numerical example.

실 주행열차의 윤중변동에 대한 정량적 분석 (A Quantitative analysis about Wheel Load Variations)

  • 김현민;오지택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.728-732
    • /
    • 2004
  • The purpose of this study is to examine wheel load variations on the bridge. It had been reported that wheel load variations involved un-sprung mass, sprung mass and train running speed, but there are no examples that measured in the running speed actuality track. In this experiment, Attach measurement sensor to equal distance on the track and measured wheel loads by using a dynamic shear strain technique.

  • PDF

Optimal Design of Fiber-optic Surface Plasmon Resonance Sensors

  • Jung, Jae-Hoon;Kim, Min-Wook
    • Journal of the Optical Society of Korea
    • /
    • 제11권2호
    • /
    • pp.55-58
    • /
    • 2007
  • We propose a systematic method for design of fiber-optic surface plasmon resonance (SPR) sensors. We used rigorous coupled wave analysis (RCWA) for analysis of the transmission spectrum, and the (1+1) evolution strategy (ES) was employed as an optimization tool. The simulation results show that the optimization method presented here is very useful in designing fiber-optic SPR sensor for strain and temperature measurement. This algorithm can be extended to another objective function with other weighting factors and optical parameters.