DOI QR코드

DOI QR Code

Effect of Fabric Sensor Type and Measurement Location on Respiratory Detection Performance

직물센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 효과

  • 조현승 (연세대학교 의류환경학과 BK21Plus 사업단) ;
  • 양진희 (연세대학교 심바이오틱라이프텍연구원) ;
  • 이강휘 (건국대학교 과학기술대학 의학공학과) ;
  • 김상민 (건국대학교 과학기술대학 의학공학과) ;
  • 이혁재 (건국대학교 과학기술대학 의학공학과) ;
  • 이정환 (건국대학교 과학기술대학 의학공학과) ;
  • 곽휘권 (한화시스템(주) 지상시스템팀) ;
  • 고윤수 (한화시스템(주) 지상시스템팀) ;
  • 채제욱 (국방과학연구소 지상기술연구원 1부) ;
  • 오수현 (연세대학교 의류환경학과) ;
  • 이주현 (연세대학교 의류환경학과)
  • Received : 2019.11.14
  • Accepted : 2019.11.27
  • Published : 2019.12.31

Abstract

The purpose of this study was to investigate the effect of the type and measurement location of a fabric strain gauge sensor on the detection performance for respiratory signals. We implemented two types of sensors to measure the respiratory signal and attached them to a band to detect the respiratory signal. Eight healthy males in their 20s were the subject of this study. They were asked to wear two respiratory bands in turns. While the subjects were measured for 30 seconds standing comfortably, the respiratory was given at 15 breaths per minute were synchronized, and then a 10-second break; subsequently, the entire measurement was repeated. Measurement locations were at the chest and abdomen. In addition, to verify the performance of respiratory measurement in the movement state, the subjects were asked to walk in place at a speed of 80 strides per minute(SPM), and the respiratory was measured using the same method mentioned earlier. Meanwhile, to acquire a reference signal, the SS5LB of BIOPAC Systems, Inc., was worn by the subjects simultaneously with the experimental sensor. The Kruskal-Wallis test and Bonferroni post hoc tests were performed using SPSS 24.0 to verify the difference in measurement performances among the group of eight combinations of sensor types, measurement locations, and movement states. In addition, the Wilcoxon test was conducted to examine whether there are differences according to sensor type, measurement location, and movement state. The results showed that the respiratory signal detection performance was the best when the respiratory was measured in the chest using the CNT-coated fabric sensor regardless of the movement state. Based on the results of this study, we will develop a chest belt-type wearable platform that can monitor the various vital signal in real time without disturbing the movements in an outdoor environment or in daily activities.

본 연구의 목적은 직물형 스트레인게이지 센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 영향을 연구하는 것이다. 본 연구에서는 호흡 신호 측정을 위하여 두 가지 종류의 센서를 구현하고 이를 밴드에 부착하여 호흡신호를 검출하였다. 20대의 건강한 남성 8명을 대상으로 호흡 측정 밴드 2종을 순차적으로 피험자에게 착용하도록 하였다. 피험자가 편안하게 서 있는 상태에서 분당 15회의 호흡을 동기화시켰다. 30초 동안의 호흡 신호를 측정하고 10초간 휴식을 취하도록 한 후 다시 30초 동안의 호흡 신호를 반복 측정하였다. 측정 위치는 흉부와 복부에서 각각 측정하였다. 또한 동작 상태에서의 호흡 측정 성능을 검증하기 위하여 피험자를 80SPM의 속도로 제자리에서 걷게 하고 이 때의 호흡 신호를 동일한 실험 방법으로 측정하였다. 한편 참조 신호를 획득하기 위해 'BIOPAC Systems, Inc.'의 SS5LB를 착용하게 한 후 동시에 측정하였다. 센서의 종류, 측정 위치, 동작 상태의 총 8개 조합의 집단 간 측정 성능의 차이를 검증하기 위해서 SPSS 24.0을 사용하여 Kruskal-Wallis test와 Bonferroni 사후검정을 실행하였다. 또한 센서 종류, 측정 위치, 동작 상태에 따라 각각 차이가 있는지를 분석하기 위해 Wilcoxon test를 실시하였다. 분석 결과 동작 상태와 관계없이 CNT기반의 직물센서를 통해 흉부에서 호흡 신호를 측정 했을 때 호흡 신호 검출 성능이 가장 우수한 것으로 나타났다. 본 연구의 결과를 기반으로 향후에는 야외 환경에서 또는 일상활동 중에도 동작에 방해 없이 다양한 생체신호를 실시간으로 모니터링 할 수 있는 가슴벨트형 웨어러블 플랫폼을 개발하고자 한다.

Keywords

References

  1. Annalisa, B., & Danilo, R. (Eds.) (2011). Wearable Monitoring Systems, Springer US. ISBN 978-1-4419-7383-2, DOI: 10.1007/978-1-4419-7384-9
  2. BIOPAC Systems, Inc. (2019). SS5LB Respiratory Effort Transducer, Retrived from https://www.biopac.com/product/respiratory-effort-transducer-bsl/
  3. Carlo M., Andrea, Daniela, L. P., Massimo, S., Sergio, S., & Emiliano, S. (2019). Contact-Based Methods for Measuring Respiratory Rate. Sensors, 19, 908, 1-47. DOI: 10.3390/s19040908
  4. Carry, P., Baconnier, P., Eberhard, A., Cotte, P., & Benchetrit, G. (1997). Evaluation of respiratory inductive plethysmography : Accuracy for analysis of respiratory waveforms, Chest, 111(4), 910-915. DOI: 10.1378/chest.111.4.910
  5. Cho, H. K., & Min, S. D. (2012). A study of the basic design for smart clothing based on measurement of the respiration. Science of Emotion & Sensibility, 15(4), 415-424.
  6. Coates, A. L., Peslin, R., Rodenstein, D., & Stocks, J. (1997) Measurement of lung volumes by plethysmograph. European Respiratory Journal, 10, 1415-1427. ISSN 0903-1936, 1997. DOI: 10.1183/09031936.97.10061415
  7. Hoffmann, T., Eilebrecht, B., & Leonhardt, S. (2010). Respiratory Monitoring System on the Basis of Capacitive Textile Force Sensors. IEEE Sensors Journal, 11(5), 1112-1119. DOI: 10.1109/JSEN.2010.2082524
  8. Huh, Y. J., & Yoon G. W. (2008). Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact. Journal of the Korean Sensors Society, 17(6), 447-453, DOI: 10.5369/JSST.2008.17.6.447
  9. Kim, K. H., Lee, J. H., & Lee, S. H. (2011). Biometric sensors and measuring devices, Seoul: Moonundang.
  10. Kim, S. H. (2015). A design of the smart clothing for respiration monitoring using the conductive fabrics coated with the non-metal materials (Doctoral dissertation), Yonsei University, Seoul, Republic of Korea. Retrived from http://riss.kr/
  11. Laouani, A., Rouatbi, S., Saguem, S., & Calabrese, P. (2016). Thorax and Abdomen Motion Analysis in Patients with Obstructive Diseases. Pulmonary & Respiratory Medicine, 6(1), 1-5. DOI: 10.4172/2161-105X.1000313
  12. Lee, S. P., Ban, H. S., & Lee, J. H. (2018). A Study on the Possibility of Three-dimensional Wearable Respiration Rate Sensor based on Surface Area Changes. Science of Emotion & Sensibility, 21(1), 35-44. DOI: 10.14695/KJSOS.2018.21.1.35
  13. Min, S. D., Yun, Y. H., Lee, C. K., Shin, H. S., Cho, H. K., Hwang, S. C., & Lee, M. H. (2010). Respiration measurement system using textile capacitive pressure sensor. The Transactions of the Korean Institute of Electrical Engineers, 59(1), 58-63.
  14. Office of Research Affairs / University Industry Foundation (2018). Korea Patent No. 101895694. Seoul: Korea. Korea Intellectual Property Rights Information Service.
  15. Park, M. S. (2016). Measurement of respiration rate using the PPG signal in wearable device (Unpublished master's thesis), Busan University, Busan, Republic of Korea. Retrived from http://riss.kr/
  16. Son, G. S., Han, S. H., Cha, B. J., Maeng, J. H., Shin, H. J., Woo, D. H., Jang, J. S., & Lee, S. Y. (2013). Firefighter's respiration rate monitoring using piezoelectric polyvinylidene fluoride (PVDF) film. In Proceeding of 2013 Conference of Korean Society of Mechanical Engineers, 2481-2484.
  17. Thiabgoh, O., Eggers, T, & Phan, M-H. (2017). A new contactless magneto-LC resonance technology for real-time respiratory motion monitoring. Sensors and Actuators A: Physical, 265, 120-126. DOI: 10.1016/j.sna.2017.08.043
  18. Yang, E. K. (2015). Inductive textile sensor for simultaneous measurement of respiration and heart activity signals applied to clothing (Doctoral dissertation), Yonsei University, Seoul, Republic of Korea. Retrived from http://riss.kr/