In a certain stochastic process, Cox's regression model is used to analyze multistate survival data. From this model, the regression parameter vectors, survival functions, and the probability of being in response function are estimated based on multistate Cox's partial likelihood and nonparametric likelihood methods. The asymptotic properties of these estimators are described informally through the counting process approach. An example is given to likelihood the results in this paper.
We develop a stochastic model to predict the score of a soccer match. We describe the scoring process of the soccer match as a markovian arrival process (MAP). To do this, we define a two-state underlying Markov chain, in which the two states represent the offense and defense states of the two teams to play. Then, we derive the probability vector generating function of the final scores. Numerically inverting this generating function, we obtain the desired probability distribution of the scores. Sample numerical examples are given at the end to demonstrate how to utilize this result to predict the final score of the match.
Journal of the Korea Society of Computer and Information
/
v.23
no.12
/
pp.43-48
/
2018
In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.10
/
pp.4034-4053
/
2015
In order to meet various requirements for transmission quality of both primary users (PUs) and secondary users (SUs) in cognitive radio networks, we introduce a channel bonding mechanism for PUs and a channel reservation mechanism for SUs, then we propose a novel spectrum allocation strategy. Taking into account the mistake detection and false alarm due to imperfect channel sensing, we establish a three-dimensional Markov chain to model the stochastic process of the proposed strategy. Using the method of matrix geometric solution, we derive the performance measures in terms of interference rate of PU packets, average delay and throughput of SU packets. Moreover, we investigate the influence of the number of the reserved (resp. licensed) channels on the system performance with numerical experiments. Finally, to optimize the proposed strategy socially, we provide a charging policy for SU packets.
Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.2B
/
pp.215-224
/
2008
The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.
Journal of the Korean Operations Research and Management Science Society
/
v.40
no.3
/
pp.63-72
/
2015
This paper presents the issue that is predicting the movement of an agent in an enclosed space by using the MDP (Markov Decision Process). Recent researches on the optimal path finding are confined to derive the shortest path with the use of deterministic algorithm such as $A^*$ or Dijkstra. On the other hand, this study focuses in predicting the path that the agent chooses to escape the limited space as time passes, with the stochastic method. The MDP reward structure from GIS (Geographic Information System) data contributed this model to a feasible model. This model has been approved to have the high predictability after applied to the route of previous armed red guerilla.
Journal of the military operations research society of Korea
/
v.29
no.2
/
pp.100-110
/
2003
Equipment replacement policy may not be defined with certainty, because physical states of any technological system may not be determined with foresight. This paper presents Markov Decision Process(MDP) model for army equipment which is subject to the uncertainty of deterioration and ultimately to failure. The components of the MDP model is defined as follows: ⅰ) state is identified as the age of the equipment, ⅱ) actions are classified as 'keep' and 'replace', ⅲ) cost is defined as the expected cost per unit time associated with 'keep' and 'replace' actions, ⅳ) transition probability is derived from Weibull distribution. Using the MDP model, we can determine the optimal replacement policy for an army equipment replacement problem.
The role of dialogue manager is to select proper actions based on observed environment and inferred user intention. This paper presents stochastic model for dialogue manager based on Markov decision process. To build a mixed initiative dialogue manager, we used accumulated user utterance, previous act of dialogue manager, and domain dependent knowledge as the input to the MDP. We also used dialogue corpus to train the automatically optimized policy of MDP with reinforcement learning algorithm. The states which have unique and intuitive actions were removed from the design of MDP by using the domain knowledge. The design of dialogue manager included the usage of natural language understanding and response generator to build short message based remote control of home networked appliances.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.2
/
pp.579-603
/
2018
In this paper we propose a QoS-enhanced intelligent stochastic optimal fair real-time packet scheduler, QUEST, for 4G LTE traffic in routers. The objective of this research is to maximize the system QoS subject to the constraint that the processor utilization is kept nearly at 100 percent. The QUEST has following unique advantages. First, it solves the challenging problem of starvation for low priority process - buffered streaming video and TCP based; second, it solves the major bottleneck of the scheduler Earliest Deadline First's failure at heavy loads. Finally, QUEST offers the benefit of arbitrarily pre-programming the process utilization ratio.Three classes of multimedia 4G LTE QCI traffic, conversational voice, live streaming video, buffered streaming video and TCP based applications have been considered. We analyse two most important QoS metrics, packet loss rate (PLR) and mean waiting time. All claims are supported by discrete event and Monte Carlo simulations. The simulation results show that the QUEST scheduler outperforms current state-of-the-art benchmark schedulers. The proposed scheduler offers 37 percent improvement in PLR and 23 percent improvement in mean waiting time over the best competing current scheduler Accuracy-aware EDF.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.5
/
pp.125-133
/
2008
In this paper, we propose active queue management mechanism (Active-WRED) to guarantee quality of the high priority service class in multi-class traffic service environment. In congestion situation, this mechanism increases drop probability of low priority traffic and reduces the drop probability of the high priority traffic, therefore it can improve the quality of the high priority service. In order to analyze the performance of our mechanism we introduce the stochastic analysis of a discrete-time queueing systems for the performance evaluation of the Active Queue Management (AQM) based congestion control mechanism called Weighted Random Early Detection (WRED) using a two-state Markov-Modulated Bernoulli arrival process (MMBP-2) as the traffic source. A two-dimensional discrete-time Harkov chain is introduced to model the Active-WRED mechanism for two traffic classes (Guaranteed Service and Best Effort Service) where each dimension corresponds to a traffic class with its own parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.