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Abstract

In a certain stochastic process, Cox’s regression model is used to analyze
multistate survival data. From this model, the regression parameter vectors,
survival functions, and the probability of being in response function are estimated
based on multistate Cox’s partial likelihood and nonparametric likelihood methods.
The asymptotic properties of these estimators are described informally through the
counting process approach. An example is given to illustrate the results in this
paper.

1. Introduction

In clinical trials, we may often be concerned with the evaluation of two or more
successive event times and their relationships to one another. For example, in cancer
clinical trials, in addition to death, we may also be interested in the fact that a patient has
reached a specific illness state and the amount of time spent in that state. The statistical
analysis of such resulting data is called multistate survival analysis.

Over the last few decades, various kinds of stochastic models have been proposed for
analyzing multistate survival data. For example, Lagakos(1976, 1977) applied a homogeneous
Markov model to analyze survival data in the presence of auxiliarly information.
Temkin(1978) considered a non-homogeneous Markov model and proposed the probability of
being in response function(PBRF) as a summary description for assessing the response to a
treatment in cancer clinical trials. Lagakos et al.(1978) suggested a nonparametric likelihood
method for the analysis of partially censored data based on a semi-Markov process model.
Aalen and Johansen(1978) suggested a product limit estimator and studied its properties for
the transition probabilities of a more general non-homogeneous Markov model with
censored observations. Begg and Larson(1982) examined the properties of the PBRF based
on a homogeneous Markov model and demonstrated that the PBRF is a fairly complete
description of the effects of treatments. Hsieh et al.(1983) studied some extended
nonparametric test statistics related to the log rank test based on semi-Markov model.
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Voelkel and Crowley(1984) applied a counting process approach to certain hierarchical
semi~Markov processes and obtained some useful asymptotic results for the PBRF.
Yeo(1989) proposed an extended model which combines the non-homogeneous Markov and
semi-Markov models and obtained the generalized maximum likelihood estimators of the
transition rates under this model. Recently, Pepe(1991) developed some nonparametric
inference for events with dependent risks in multiple endpoint studies.

On the other hand, for a simple two state survival data model, say alive and dead,
Cox(1972) suggested a regression model(so—called the proportional hazards model) to study
the effects of explanatory variables(or covariates) upon which the individual’s survival time
may depend. Cox suggested a method of estimating the regression parameters in the
absence of knowledge of the unspecified underlying hazard function and also then
estimating the underlying hazard function. Since Cox’s original paper, many others have
contributed to this model.(e.g., Kalbfleisch and Prentice(1973), Breslow(1974), Cox(1975),
Efron(1977), Tsiatis(1981), etc.) On the other hand, Aalen(1975,1978) introduced the
multiplicative intensity model for counting processes and showed how this model provides a
general framework for analyzing data on events observed over time. His approach has been
proved remarkably successful in yielding important results about statistical methods for
many problems arising in censored data.(e.g., Aalen and Johansen(1978), Gill(1980),
Andersen et al.(1982), Andersen and Gill(1982), Ramlau-Hansen(1983), etc.) This counting
process approach, which relies heavily on modem theory of martingales and stochastic
integrals, also has the considerable advantage of providing straightforward, but rigorous,
proofs for the distributional properties of the varicus estimators and test statistics under
very general censoring patterns.

In this paper, we employ Cox’s regression model to the non-homogeneous Markov model
for analyzing multistate survival data. However, in order to simplify ideas, we define our
model in a four-state space given by Temkin(1978).

In a four-state space, each patient who starts in the inital state, say 0, may be assigned
at random to receive a drug treatment. Upon receiving this treatment, each patient may
entered the response state, say 1, a transient state showing a certain improvement, or may
entered the progressive state, say 2, an absorbing state deteriorating or dying without
showing any improvement or may entered the relapse state, say 3, an absorbing state
which can be reached only from the response. We assume that for each patient one of
these transitions would occur with probability one, but that patient may be censored before
the transition occus. We also assume that no patients can be in the response state after
either progression or relapse. Thus, the only possible direct transitions are 0 — 1, 0 — 2,
1 — 3. Figure 1 exhibits this four-state space.
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Figure 1. Four-state space

Let T, T2, and T3 be the transition times from state 0 to 1, 0 to 2, 1 to 3,

respectively. And let hi, hz, and hz be the transition rates (or hazard rates) from state 0

to 1, 0 to 2, 1 to 3, respectively. Then, for the case of continuous random variables
hi (i=1, 2, 3) are defined as follows:

(D = lim —— P(STi<erAtITi2e), 0St<®, i=1,2 (LD
At—0

and

hi(tls) = lim‘%tP(tST3<t+AtlTsZt,T1=s), 0Ss<t<®. (12
A0

That is, hi(t) (i=1, 2) are the instantaneous rates of transitions to state i at time ¢
and hs(tls) is the instantaneous rate of transition to state 3 at time £, conditional on
having entered state 1 at time s. In this four-state stochastic process, we may be
interested in the distribution of time spent in each state { before next transition if
censoring were eliminated. In general, this distribution may depend on the transition time to
each state, however, certain specific assumptions may be given. In particuler, homogeneous
Markov, non-homogeneous Markov, and semi-Markov models can be described in terms of
hazard rates, completely analogous to the transition probabiliies in a more general
stochastic process. If h;i (i=1, 2, 3) are’ constants, then the model is called the

homogeneous Markov model. If hs(¢|s)=hs(t), a function of ¢ only, then the model is

called the non-homogeneous Markov model. If A3(tls) = hs(t ~s), then the model is called

the semi-Markov model.

Now, in this paper, we apply Cox’s regression model to the non-homogeneous Markov
model for the analysis of multistate survival data. In our model which we would call the
Markov regression model, the hazard rates h; (i=1, 2, 3) are defined as follows:

hi(t;2(8) = hoi(t) exp(Biz(e)), i=1,2 (1.3)
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and
ha(tls 1 z()) = hos (tls) exp ( Baz(t)
, (14)
= ho3(t)exp (Baz(t)),
where z(t) = (z1(8), ..., zp(t)) is the vector of, possibly time—dependent, covariates
associated with each patient, and B = (Ba, -, Bip)” (i=1, 2, 3) are the vectors of

cause-specific regression parameters, and ha( ) (i=1, 2, 3) are the unspecified
underlying hazard functions for each patient with covariate z( *) =0. We note that it is
convenient to let p, the number of covariates, to be the same for all i. This can always be
possible, if necessary, by introducing extra type-specific covariates.

We next describe the plan of this paper. In Section 2, in the Markov regression model
we estimate the regression parameter vectors and the underlying cumulative hazard
functions or survival functions based on Multistate Cox’s partial likelihood and multistate
nonparametric likelihood methods, respectively. We then estimate the PBRF. In Section 3,
we describe informally the large sample properties of the estimators given in Section 2
through the counting process approach. In Section 4, we illustrate our results to the real
data obtained from a certain clinical trial. Finally, in Section 5, we give some concluding
remarks.

2. Multistate likelihoads
2.1 Multistate Cox's partial likelihood

Suppose that there are n individuals in the initial state at time O, the time to start for
study. Let t; (i=1,2,3;j=1,2,~,n) be the ordered transition time to state i

for the jth individual. As usual we do not observe all ti's, but possibly censored
transition  times f (i=1,2,3:j=1,2,~,n) and censoring indicators
8; = I(f; = ty), where I(A) denotes the indicator function of a set A. Then, by the

analogous arguments used for Cox’'s partial likelihood in the continuous case, under the
non-homogeneous Markov model the multistate Cox's partial likelihood is of the form
LT

exp(z;( £;)) ’ (2.1)

3 n

L(B1, By B3 = T T —

2. exp(Bazi &)
1E€R(ED

where Ri(t) = (1:£; 2 t) (i=1,2), ie. the set of individuals who are observed to be
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at risk just before time ¢ and have a potential to enter state i, and
Ra(t) =(1:iy 2 t >fy,3u=11}, ie. the set of individuals who are observed to be at

risk just before time ¢ and have a potential to enter state 3, but already responded before
time ¢.

We note that the likelihood (2.1) can be factored for each i. Thus, each B; can be
estimated separately. One of the advantages of the multistate survival data models is that
formally we can analyze each transition separately and treat other types of transitions as
censoring. As a result, it can be handled as in the usual survival data. On the other hand,
on the continuous variables case, survival data frequently include ties because of rounding
off or grouping. If ties are prestnt in the observed transition times t;, then the likelihood
(2.1) may be modified as follows;

L(B1, B2 B3) = IT]

v exp( 2 Bizity)
i=1j=

1 -, 2.2)

[ léi,ex‘)(ﬁ;il(tu))]

where k; is the total number of individuals who are observed to enter state {, and
Ry = Ri(ty), and Dy is the set of individuals who are observed to transit to state [ at
time ¢;, and dy is the number of individuals in the set Dj. If there are no ties, then all
dij= | Dy | =1, and the modified likelihood (2.2) reduces to (2.1).
From (2.2), the log likelihood is given by
tog L(B1, Bz Bs) = 3 log Li(B) | 23)

where
Ki , , .
log Li(By) = E[ 2 Bizitty) - di log { IEZRI_]eXp(,[S_izl(tU))}],l=1,2,3. (2.4)
And the first derivatives of (2.3) with respect to (wrt.) B; (i=1,2,3), respectively

give the score vectors
3
UiB) = 8 log Li(B:)

ki
= 121: {Sy - diA(BD}, i=1,2,3, (25
where

§ij = IEZD,','ZI(tij) (2.6)

and
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2 2ti) exp(Bizi;))

Ai(Bi) = - (VA0
2 exp(Bizi(ty))

1€ER;

Similarly, minus the second derivatives of (2.3) wrt. 8; (i=1,2,3), respectively give

the information matrices

(B = -3 UdB)
ki
= Z:f di Ci(Bd, 1=12,3, (2.8)
where
> zi(ty) PPexp(Biziti)
IERY ®2
Ci(Bi) = - Ai(B) 7 29

ngﬁeXpm;z,(t,-,-))

and where X ®* = X X’ for any vector X .

The values B: (i=1,2,3), called the maximum partial likelihood estimates (MPLE's),
that maximize (2.1) or (2.2) can usually be obtained by the Newton-Rapson method as the
solutions of U«{B:) = 0. In order to make inferences about §: we mainly have to rely on
large sample procedures. In the next section, we sketch that under mild conditions on the
covariates and censoring, B: (i=1,2,3) have the asymptotic normalities with means B and
covariance matrices I; (B i), where B is the vector of true values of B;. Inferences can
also be based on the score vectors U;(Bi) which are asymptotically normal with means
0 and covariance matrices [i{B ). For estimation of I:(Bi) or I; }(B i), we replace B o
by B.. The third possiblity is to use the likelihood ratio method. For example, if we want

to test Ho:B:i =9 for all i=1,2,3, then the above three methods give the following
test statistics

Wi = éﬁ;li(ﬁi)ﬁi , (2.10)
Wy = SUQ TN UKD, 211)
and
- L,-(g)
Ws = -2 ?;bg( T8 ) (212

respectively. These three test statistics have the same asymptotic chi-square distribution
with 3p degree of freedom.
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2.2 Multistate nonparametric likelihood

In Section 1, the Markov regression model was described for the continuous variables
case. However, as Johansen (1978) pointed out, if we define the model only for the
continuous case, then the nonparametric maximum likelihood estimates (NMLE’s) of the
underlying survival functions do not exist. Thus, in order to obtain the NMLE's of the
underlying survival functions, We rewrite our model given in (1.3) and (1.4) in terms of
survival functions so that the model includes both continuous and discrete cases. That is,
we define the Markov regression model as

Sit; z(B) = Sa() D 2 o (2.13)

Sa(tls ;s 2(8)) = Sos(tls) exp(B3z(t)

Sos(t) exp(B3z(t))

= ( SOB(S) ) , (2.14)
where So(t) = P(T; > t; z(t) = 0) (i=1,2,3) are the underlying survival functions

corresponding to the transition times to state I. For the discrete case, (2.13) and (2,14)
can be expressed, in terms of hazard functions, as

hi(ti2(8) = 1-(1-hoi () 2D =19 (2.15)
and

ha(tls iz() = 1-(1-he () ®®Z (2.16)
We now proceed to find the NMLE’s of So(t) (i=1,2,3) as follows : As with the

same notations given in Section 2.2, let ti << ti be the ordered observed transiton
times to state i, and define tio =0, tix+1 = © for convenience. And let Cj be the set of
patients with censoring times in [¢y, ¢:j+1) (i{=1,2,3; j=0,1, -+, ki). The censoring times
in C; are denoted by cj. Then, under the assumption of indepent censoring mechanisms

(see Kalbfleisch and Prentice’s (1980) book p.120) the nonparametric likelihood function for
four-state survival data is of the form

2 ki
L=0T[ I {Sey-0i20-Sittyizn } I Silewsz ]

k3 . , . ,
x 11 [ ugaa,-{ S3(ty-0lty s z) - Satylty 120 } IEHCQ,-SS(cw“U :gz)] (217

j=1

where Si(t-0) = Lll})l Si(t-h), and zi= zi(ty) for each time ti. ty (j=1,2, ,ks) is

the response time of the jth individual corresponding to t3 or cui.
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If we substitute (2.13) and (2.14) into (2.17), then we have

ki . . )
(Bigs) exp(Biz:) (Biz:)
L=0IT1 [ lergﬁ{ Soi(tij=0) B2 _g () =@ Riz } IEI-ICﬁSOi(Cijl) o (Biz ]

I { Se(t3-0) =P B2 _ga(py) P B2
Ses(ty ) *° 820

. exp(B3zr)
p [Swles) (2.18)
1€Cy | Sw(ty )

In the likelihood function L, we note that each product term involves only each one of
the functions So(-) and B;(i=1,2,3), respectively. Since we assume no
interrelationships among Soi( *) and Bi's, L can be maximized by maximizing each

product term. Thus, we can write L in (2.18) as
3
L= ‘1}1 L; (2.19)

where L; (i =1,2,3) are the product terms corresponding to state i in (2.18).

Now in order to find NMLE's of So( -), we employ the same approach given by
Kalbfleisch and Prentice (1973). Since Soi(¢) is one minus the distribution function, it is
nonincreasing and right continuous, and thus as with the Kaplan-Meier estimate, each L;
is maximized by taking Soi(t) = Soi(tij+1~0) for #; <t <t;j-1 and allowing probability
mass to fall only at the observed transition times ti, ', t;x. These observations lead to
the consideration of a discrete model with hazard contribution Ay (=h;(¢;)) at time
tij (j=1,-,ki). Thus, we take

Sei(t) = j:ESt(l—hij) ,1=1,2,3. (2.20)

If we donote dy(=a;(ty))=1-hy, then we have

Soi(tii=0) = Soiltij-1)
-1

- kl;Ila ik J = 1) 2; ...,k'. » (221)

where aj0=1. If we substitute (2.21) into (2.18) and rearrange terms, then we obtain

;K exp (B}z) exp (Biz0)
Li= g[ M (1-ay =020 T q, o0 ®2] (2.22)
Jj=1 €Dy I€ R;i- Dy



Analysis of Multistate Survival Data 61

The estimation of Soi{ + ) as well as B; can be obtained by jointly maximizing (2.22)
w.rt. both dj's and B However, due to Kalbfleisch and Prentice (1973), a simpler
approach is to take B;= B, the MPLE of B; and then to maximize (2.22) w.rt. a;'s.

If we differentiate the logarithm of (222) w.rt. each oy (j =1, -, ki) and rearrange
terms, then we obtain

exp (Biz)) , ) o
25 ] g, e . ex0(Bizn, i=1,2,3 5 j=1,-k . (22)

If dij= | Dyl =1, then (223) gives a direct solution of the form

. -Biz)
R (Bizp e
dy = |1-—p EZ" (224)
gb exp (Biz)
1
~1- 2.25)

IéYfe;; exp (Bizn)

And if dy > 1, then (2.23) should be solved iteratively for aj. By noting that

PR LN exp (Biz1) loga; and substituting this into (2.23), we get a good initial

value to dj such that

N ~djj

dj = exp , (2.26)
Ie%v exp(Bizp
d[j
~1- , (2.27)
Ig?i]exp(ﬁizl)
From the above results, the NMLE’s of Soi(¢) (i =1,2,3) are then
Se(ty = I @y , i=1,2,3. (228
JitysSt

And from (2.28), the curmnulative underlying hazard functions of

Ho(t) = fho,'(u)du (i=1,2,3) may be estimated by
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Aot

-log Sau(t)

> —loga,y

Jitij St

In (228), we note that when the covariates vector

(2.29)

21= ¢ for all individuals,
Salt) (i=1,2,3) reduce to the Kaplan-Meier estimates. On the other hand, from (2.13)

and (2.14), the estimated survival functions with the specified covariates vector Zzo(t) are
given by

S;(t;_z_o(t))=j.tI1Staﬁexp(Ez°(t)) L i=1,2 (230
Saltls:zo(t) = T

. LR e (£324(8) (2.31)
jis<tiy St

In the next section, we discuss briefly the convergence of Bu(t) to a Gaussian process
which was essentially proved by Anderson and Gill (1982). In specific form,
Y (Ro(t) ~ Ho(t))

(i=1,2,3) at each fixed t are asymptotically normal with means
zero and the estimated variances

1 .
) , +n QB0 I7NB) Q(BiLY, i=1,2,3, (232
Jityst ( Z exp(_ﬁizz))z
1€ Ry
where .
I% ziexp(Biz)
Qb= ¥ - — (2.33)
jity st (léﬂexp(_ﬁi_z_l))
and

zi=z2ity). It follows then that for a specifed vector  Zo(1),

Bi(t:zol0) = fexmﬁ}zo(u)) dBu(w), Su(t), and S:i(t;zo(t) = Su(p) *Lz®
would also converge weakly to Gaussian processes.

Based on the preceding results, we now estimate the PBRF. As mentioned in Section 1,

Temkin(1978) introduced the PBRF to provide a unified view of response-related endpoints.
For no covariates case, the PBRF is defined as

P(t) = P(T15t<T4)

- f Saltls) S1(s) Sals) dH1(s) (2.35)
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where Si(tl|s) = exp(—fha(uls)du ), and T4 is the transition time to state 2 or 3.

Under the Markov regression model, the PBRF is given by
exp(Baz(t)

= SOB( t) exp( B1' 2(s))
P@ L‘( Soa(s)) Suls)

x Sq(s) P82 &) exp( 81 2(s))dHo(s). (2.36)
In order to estimate the PBRF in (2.36), we can use (2.28) and (2.29) for the estimates of

Soi(t) and He(t) (i=1,2,3), respectively. Thus, the estimated PBRF is given by

exp ({3 z(8)

Fond _ g(B(t) exp( 1z(s))
P() = f(——gm(s) ) Sols)
x Boals) L exp(B12(s) dB auls). 237

We note that P (¢) is a step function with jumps at each observed transition time ¢j.

Thus, in practice P (t) can be evaluated as follows : For all observed transition times ¢;
's (i=1,23 j=1273, - ki), we rearrange these times in ascending order, say 0=
to<ni< <tk .

Then for t €[¢t;, tis1), P()=P (t;) and

,‘;'exp(ﬁzz( )

-~ L i 2, exp(Fizde) P (Bazi(t)
J
x zeza exp(B1z ;) (B alt;)-Halti-1) (2.38)
4
or, after a small amount of algebraic manipulation, P (t;) can be calculated recursively of
the form
( B3zt
_ Sele) =B -
P ()= el (ti-1)
Swlti-1) &, l
(Bizit)) Bzt
+ Bale) FEE g e T
X IEZG'CXD(_ELZI(Q))(HOI([:‘)'HOl(ti-l)), (2.39)

where G is the set of individuals whose transition times to state [ are observed to be
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tj, and

i
Saltp) = I diteo), i=1,2,3,
Bol(t) = kg-logﬁ(tk),

and where d;(tx)=1 if tx & {ti:j=1,2,~ ki).
For the asymptotic property of P (¢ ), as mentioned before, we note that all estimated
integrand functions of P (¢) given in (2.37) converge weakly to Gaussian processes. Thus,

P (¢) would also be asymptotically Gaussian.

3. Asymptotic properties

In this section we discuss the asymptotic properties of the estimators obtained from the
previous section. Following the lines of Andersen and Gill(1982), the rigorous proofs for the
asymptotic properties of these estimators can be given in detail. However due to Gill(1984),
we informally sketch how the proofs can be followed by the counting process approach.

For excellent reviews of the counting process methods, see Andersen et al.(1982),
Andersen and Borgan(1985), and others. Recently, Fleming and Harrington(1991) and
Andersen et al.(1993) wrote the books for the survival analysis based on counting
processes, respectively. For the background definitions and results used in this section,

we refer to these materials.
3.1 Counting process formulation of the model

For the four-state survival data model described in Section 1, Let Ny(8)
(i=1,2,3; j=1,2,~,n) count when the jth individual is observed to enter state [ in

[0,¢] in the presence of censoring, i.e. Ng(t)=1{ﬁ$t, 8;=1}. It is assumed that the
individuals behave independently of each other, and that no two transitions occur
simultaneously. Then N={(Ny(#);i=1,2,3, j=1,2,-,n), 0<t<®} is regarded
as a 3n-variate counting process, ie. each Ny is a counting process, and that no two

component processes jump at the same time.
Under certain regularity conditions, which need not concemn us, this multivariate counting

process N is governed by its (random) intensity process
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A={(hj(®);i=1,2,3,j=1,2,~,n),0<t<®} which is argued as follows : Let I
be a small time interval of length dtf around time t, and let dN;(¢) be the increments of
Ny over Iax. If we let Fr- represent everything that has happened just before time ¢,

then we have

Li()dt = P{dNj(t)=1| F,-} (3.1
here Fi , called the history, includes a complete specification of the paths of
N(s), 0<s<¢, as well as all other events implicitly or explicitly included in the model
which have happened up to (but not at) time t.

Under the assumptions of the independent censoring mechanisms and our Markov
regression model, the specific form of the above intensity process X;(£) is given as

follows : At any time ¢, given what has happened just before the time interval Is, we
know that the jth individual has been observed to enter state i, or he has been censored,
or he is to be at risk for making a transition to state { (i =1, 2, 3). For the first two
cases, the conditional probability of observing N to jump in the interval I is zero. For
the latter case, this conditional probability is hi(t; zi(t)) dt =
hoi(t) exp(Bi zi(t)) (i=1,2,3), where haltls; z(8)) =hs(t;z(t)) is denoted for
convenience (s is the transition time to state 1), and we assume that the underlying
transition intensities (or hazards) for different individuals are identical.
We define Y (t)=1 (i=1,2;j=1,2,~,n) if the jth individual is observed just
before time ¢ and have a potential to enter state i ;Y;(£) =0 otherwise, ie.
Yi(t) ={ Ty 2t}
=I{N;(t-) =0} (32)
and define Y3(¢) =1 if the jth individual is observed and have a potential to enter state
3, but already entered state 1 just before time ¢: Y3 (¢) =1 otherwise, ie.
Yy(8) = I{ Ty 2¢t>Ty, 5y=1)
=I {Ny(t-)=1, N3y(t-)=0} . (33)

From the above arguments and from (3.1), the counting process N;{t) has the intensity
process Ai(t) wrt F;, where
Mi(Ddt = Yy (D ho(t) exp(Bizi(e)dt, i=1,2,3 ; j=1,2,~,n (34

In (34), we note that ho(¢)exp(B;z;(t)) is a non-negative deterministic function, while
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Y;(t) is a non-negative observable stochastic process whose value at any time ¢ is

known just before time . we say that a process with these properties is predictable.

Formally, if a process is adapted and has left-continuous sample paths, then it is
predictable and locally bounded. Moreover, any deterministic process is predictable.
Now, we give an extension of (3.4) of the form

ri()dt = Yii(8) ho(t) exp(B: Zi(e)) dt , (35
here we have replaced the fixed covariates vector z;(t) by the random covariates vector
Zit). We no longer require that each Ny jumps at most once, nor do we require that
each Y is of the special form given in (3.2) and (3.3). All we require is that Ny, Y and
Zii are observable stochastic processes and that Y; and Z; are predictable. So, Y; and
Z i are indicator and covariate processes, respectively which are fixed given what has
happened just before time t, ie. given F: , we know the values of Y;(¢) and Z;(2)
(but not yet N(t) for instance), where F:- is formally given by

Fe- = 6{Nj(s), Yi(s+), Zils+): 08s<t,i=1,2,3,j=1,2,~,n}. (36
The above condition is forced on us by the meaning of A;(¢) as the transition intensity
with which N; jumps given F.-. This also restricts Y; to being non-negative.

In order to find the asymptotic properties of the estimators given in Section 2, we now
make a link between the counting processes and martir@ales. Since the increment dN(t)

of N over Iy is a 0-1 variable, we have, from (3.1)
E{dNy(D)|Fe-} = hg(t)dt . (37
Thus, if we define stochastic processes My (i=1,2,3;j=1,2,~,n) by having

increments
dMi(t) = dN;(t) -hg(t)dt (38
over Iz (and satisfying M;(0)=0), then
E{dMit)|F:-} =0 . (39

This implies that (3.5) is equivalent to the assertion that My's are martingales, where
My = Ny(0) - [ Yis) hats) exp( BiZ(s))ds . (310)

In particular E{M;()} = 0 for all 0<t<®, The relation (3.10) is the key to the

counting process approach to our Markov regression model. In fact, This is known to the
Doob-Meyer decomposition theorem of the local submartingale Ny, and by this theorem
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Mi(t) of the form (3.10) are local square integrable martingales and hence they are
orthogonal, ie. <My, Mx> =0 for j=k. In general, for two martingales, say M1, Mz,

the predictable covariation process is defined by <Mi, M2> =£d<M1, M32>(s), where

d<Mi, Mz>(s) = Cov{dM(s), dMa(s) | Fi-} over Ia. For a martingale M, the
predictable variation process is defined by having increments
d<M>(t) = Var{dM(¢t) | F:-} over Is4 For the counting process martingales M given
in (3.10), the predictable variation processes are given by

<My > (D = j:yi,-<s) hoi(s) exp( BiZy(s)) ds . (3.11)

3.2 Asymptotic properties of the estimators

In the following we discuss the asymptotic properties of the estimators given in Section
2. The proofs of Andersen and Gill(1982) go through almost unchanged for our model.
Therefore, we briefly sketch the ideas.

From the previous arguments, the multistate Cox’s partial likelihood (2.1) or (2.2) can be
re-presented as

3
LBy, B2 B3)= iI:IlLi(ﬁi) (3.12)
where
. dNi(s)
LB = - Yii(s) exp{BiZi(s)} ’ (319)

j=1 s20 kz’::lYik(s) exp{BiZu(s)}

and where the product over s is a product over disjoint intervals. So, (3.13) reduces to a
finite product over all j and s for which Ny jumps at time s (dNy(s) =1) ; elsewhere
dNii(s) =0. We also define Li(B;t) as the likelihood function in which the product over
s20 in (3.13) is replaced by a product over o<s<t. Since the likelihood Li(B:) is based
on observations of {(Ny, Yy, Zy :i=1,2,3, j=1,2, —,n} on the interval
(0, ®), we may regard it as the value of the process Li(B;t) as t —®. So, we
denote Li(B)) = Li(Bi @),
The logarithm of the likelihood L:(B; t) is of the form
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log Li(Bi, t)

= }gfﬁézﬁ(s) dN;(s) - J: log { ’;Yik(s) exp{B;Zu(s)}}dNi(s) , (314

1
where N, = Z;Nij. Since the score vetor U;(B;) is the value of the process U;(B;, )
~

as t — @, where

UiBi, )= log Li(Bi, t)

ﬁ
= 3 [ Zi(® - BBy 9) dNuts) (315)
Jj=1
and where
ZYU(S) Z (S) exp{ﬁ L i S))
Ei(Bi,s)= (3.16)

iY,,(s) exp{B:Zi(s)) ’

the estimators B, (i=1,2, 3) can be defined as the solutions to equations
Ui(Bi,©)=0, i=1,2, 3. (317
In (3.15) each integrand term Z;(s)-E;(B;,s) may be thought of as a covariate
centered by its empirical average calculated with the probability mass function which
assigns a weight proportional to Y;(s) exp{B;Z;(s)} to the jth individual. The average

of these centered terms w.r.t. this same discrete probability function is then zero. That is,

j:zl{g,-,«s) (B, $))Yi(s) exp B Zi(s)

=0
ZYU(S) eXp{ﬁ L i S)}
or equivalently,
3HZi(s) - Ei(B1, ) ¥i(s) ha(s) exp{BIZy () = 0.
This last equation implies that we have U;(B;, t) of the form
uis,n -3 [ Hio)amy(s) | i=1,2,3, (318)

where M (s) is given by (3.10) and H;i(s) = Z;(s) - Ei(B, s) is the vector of predicta
ble processes (it only depends on the fixed parameter B; and the predictable processes
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Yi, Zi (j=1,2,~,n).

We note that by the martingale transformn theorem, a stochastic integral of a predictable
process w.rt. a martingale is itself a martingale, and that a sum of martingales is also a
martingale. Thus, if we write

Uilfs, ) = gumi, D, (3.19)

where

UiBit) = f_fi.y(s) dM ;i (s)

= [ Zi(o) - BBy o) aMy(s) (320)

then Ui(Bit) considered as a stochastic process in ¢ is the sum of n (vector)

martingales which is also a martingale.
In (319), we note that for each i(i=1,2,3), U;(Bi,t) (j=1,2,~,n) are not

independent, due to the term E:(B: s), however U:(Bi t} can be seen as a sum of
uncorrelated terms from the martingale representation for U.:(B;,¢). Therefore, the
martingale central limit theorem can be applied to prove that as n — o, the processes
n Y U(Bi, ) (i=1,2,3) are asymptotically distributed as the Gaussian martingales with

mean vectors g and covariance function matrices n™'/:(8:, ), where

LB 0 = - — 2= U840
- [vig,oavis) , i=1,2,3 (321)

and where

121 Yi(8) (Zi(s) P exp (B Za(s)}

Vi(Bi, s) = 7 .
}zl: Yi(s) exp{B:Z;(s)}

@2

S Vi(s) Zu(s) exp (B Zs(s)}
_i=1

- : 1=1,2,3. (322
jgzy(s) exp{B:Zi(s)} )

To prove the asymptotic normality of Yn(B:-B:), we use a Taylor expansion of
U:(B: t) around Bi, much in the same way as for a standard maximum likelihood theory.
As a result,vn(B.:- Ba) (i=12,3), as n — ®, have the asymptotically multivariate normal

distributions with mean vectors o and covariance matrices nl; ¢ B, where
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Li(B:) = Li(f;, o). To prove the consistencies of _ﬁi (i=1,2,3), which need to be shown
before the above result, we can use Lenglart’s inequality and the fact that log Li(Bi, ¢) is
a concave function with a unique maximum at B:= B.. Sufficient conditions for the
consistency and asymptotic normality of 8. were given by Andersen and Gill(1982).

On the other hand, the estimates Ha(t) (i=1,2,3) given in (2.27) can be re-presented as

Tatn = [ —LHd220 dNi(s), i=1,2,3, (323
)§ny(s)exp{’ﬁi_2y(s)}

where Y= ,~§ Y;. Under the same conditions for the asymptotic properties of 3,

Vi Ault) -Aa() (i=1,2,3) on 0st<T, as n — o, are asymptotically distributed as a

Gaussian processes with means zero, independent increments, and the estimated variance
functions

n _f : dN;(s) — H{B4 O LB T Hi(Bo D, i=1,2,3, (324)
[ Evio exotdizoton ]

T
where the time T is such thatJ; ha(s)ds < @, and

3 Yi(s) Zits) exp(BiZi(s)
— —— dNi(s), i=1,2,3. (325)
[Z;YU(S) exp{_ﬁ}zi;(s))]

Hi(B:, 0= - J:

The proof of this result is as given in Andersen and Gill(1982), and the main step is
being to notice that

1: i dN,'(s)’ - A, i=1,2,3
JZ;Y.y(s) exp{BiZi(s)}

are local square integrable martingales, say W:(t) which are orthogonal to U:(Bi, 1), where

AsD) = J:I(Yi(s)>0}ho.'(s)ds, i=1,2,3,

W.'(t)=f . dM‘(S)' . i=1,2,3,
° 2Yils) explBiZils)

and where
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M;=N;- A, Ai= 2 Ay,

Ay(t) = fl.j(s)ds .

Based on the above results, the PBRF given in (2.36) can be estimated by

exp(B3Z ()
= . (_Swl) " exp(BZ(s) (B Z(s)
Fw-= [ ( <=5 Bals) Suls)
x exp(B1.Z(s) d A als) , (3.26)
where
n Yils) exp(B7 Z (5D dNy(s)
Soule) ™ EFZD = T 11 (1- —3 L L i=1,2,3,
jml sst 2 Yuls) exp(B:Zi(s)
47 als) = ——AF20} dN(s)
1§YU(S) exp(B1Zy(s))
and

exp(BiZ(s)) = }Z‘i Yu(s) exp(BiZy(s)) .

We see that this estimate coincides with the estimate given in (2.37). Following similar
methods of Voelkel and Crowley(1984), we can obtain the asymptotic properties of the

estimate P (¢+). As a result Ya{ P (1) - P(¢)) would converge weakly to a mean zero

Gaussian process.

4. Example

In this section, we illustrate the results in the previous sections to the real data given in
Hsieh(1980). In a clinical trial performed at the Wisconsin Clinical Cancer Center, 135
patients with advanced breast cancer had been entered for the study. A primary goal of
this study was to evaluate the relative effectiveness of Adriamycin and Dibromodulcitol,
with and without Tamoxifen(denoted by DAT and DA, respectively) for these patients.

In this study, the ECOG(Eastern Cooperative Oncology Group) criteria were used to
evaluate response categories of the patients. Patients who have complete response or partial
response or improvement were classified as having a beneficial response. Of the 135
patients, 55 and 80 were randomly treated with DA and DAT, respectively. Among these 55
patients, 18 had relapsed after having response, two had responded without relapse, and 35
progressed. Among those 80 patients, 26 had relapsed after having response, 18 had
responded without relapse, 35 had progressed, and one had neither progressed nor
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responded.

In order to apply the results in this paper, we consider 135 patients with DA and DAT
treatments as a single population. So, in the relations (1.3) and (1.4), let the covariate z be
a single dummy variable to classify these two groups such as z =0 if patients are treated
with DA, and z=1 if patients are treated with DAT. Then (1.3) and (1.4) are s nply
reduced to hi(t;z) = ha(t)e™ (i=1,2) and ha(tls:z) = he(t)e™, where z=0 or 1.

For the advanced breast cancer data in Hsieh(1980), solving U:(B:) =0 given in (2.5),
then the estimates of B: (i=1,2,3) are B,=-00511, B,=-04197, and Bs-= -0.5755,

respectively. And from (2.8), their estimated standard deviations, ie. I; (B:) (i= 1,2,3)

are 0.3071, 0.2397, and 0.3098, respectively.

Thus, if we use (2.10) for testing Ho:B:=0 for all {= 1,2,3, then we have Wi = 6.793
which gives the one-tailed p-value between 0.05 and 0.1. This implies that the relative
effectiveness of the treatment DAT to the treatment DA seems to be not great but slightly
better over all sense. In particular, the values of standard normal statistics, ie.
Zi=B:i/1: (B (i=1,2,3) are -0.1664, -17509, and -1.8577, respectively. And the
corresponding p-values for testing Ho:B:=0 vs Hi=0:<0 for each i=1,2,3 are 0.434,
0.04, and 0.032, respectively. From this result, we see that the addition of Tamoxifen to
Adriamycin and Dibromodulcitol does not seem to improve the probability of getting a
beneficial response, but appears to diminish the probability of reaching progression or
relapse. g

On the other hand, figures 2.a)-(c) show the estimated survival functions of the
transition times to each state. These figures also support the above conclusions,
Specifically, Figure 2.(a) shows that the DA patients have the longer duration times in the
response state than the DAT patients. Figure 2.(b) and (c) show that the DAT patients
have the larger survival percentages than the DA patients in the progressive and the
relapse states, respectively. Figure 3 represents the curve of the estimated PBRF for the
patients with the treatments DA and DAT, respectively. From this figure, we see that the
steeper rise of the DAT curve reflects the shorter time for response to occur. And the
higher DAT curve indicates that the DAT patients comprise the larger percentage of
responders than the DA patients.

Therefore, in the overall sense we conclude that treatment DAT is slightly more effective
than treatment DA.

-u2
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Figure 2. Estimated Survival Functions
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5. Concluding Remarks

In this paper, we have used Cox’s regression model to analyze multistate survival data.
we have seen that the multistate Cox’s regression model can be useful to a unified
treatment for a complex experiment such as a clinical trial described in this paper.

On the other hand, we have informally shown that how the multistate Cox’'s regression
model can be formulated within the framework of the multiplicative intensity model due to
Aalen(1975, 1978). Based on this counting process formulation, we have briefly discussed
the large sample properties of the estimators given in this paper.

However, in this paper we have been only concerned with the non-homogeneous Markov
model. In fact, Cox’s regression model may also be used for the semi-Markov model. And
then we may want to develop methods of distinguishing between the Markov and the
semi-Markov models.

In conclusion, we hope that the results in this paper would be useful to the analysis of
data arising from clinical trials. We also hope that an attempt at the counting process
formulation in this multistate survival data model would provide a good opportunity for
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other statisticians to use these ideas in their own model buildings and analyses.
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