• Title/Summary/Keyword: stiffness modeling

Search Result 699, Processing Time 0.025 seconds

The Sensitivity Analysis for Structure Modification using Partial Differentiation (구조물의 동특성 개선을 위한 모드 매개변수의 민감도 해석)

  • Lee, Hae-Jin;Abu, Aminudin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.453-457
    • /
    • 2006
  • This study predicts the modified structure of eigenvectors and eigenvalues due to the changes in the mass and the stiffness of the structure. The sensitivity method of natural frequency using partial differential are derived with respect to the physical parameter to calculate the structure modification. The method are applied to the 3 degree of freedom???slumped mass model by modeling the mass and stiffness, and then applies the method to a real crankshaft system. The position, direction of parameter change and modified value were predicted for modification. Finally the predicted value is used to investigate the magnitude of vibration and we found that the effect of modification results to reduce the level of magnitude vibration is satisfactory.

  • PDF

A Vibration Analysis Model for Bellows in the Vehicle Exhaust System Using Method of Reduced Degree of Freedom (자유도 저감법을 이용한 자동차 배기시스템의 벨로우즈 진동해석)

  • Shim, Dong-Hyouk;Kim, Dae-Hyun;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.304-308
    • /
    • 2006
  • The focus of this study is modeling technique for a bellows in vehicle exhaust system. Bellows was developed using tile finite element model by replacing with the equivalent beam. The equivalent beam model were studied in detail. Non-structural node in the cross section of original model is given to expressing their motion. Equivalent mass matrix and stiffness matrix calculated using Guyan reduction method. Material Properties of beam was obtained from the direct comparison between equivalent model and that of Timoshenko beam model. The calculated natural frequencies and mode shape are compared with the reference results and coincided well. The results were compared with the confirmed results, which were in good agreement.

  • PDF

Modal Analysis of a Rotating Packet Blade System having a Crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

Time domain identification of multiple cracks in a beam

  • He, Z.Y.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.773-789
    • /
    • 2010
  • It is well known that the analytical vibration characteristic of a cracked beam depends largely on the crack model. In the forward analysis, an improved and simplified approach in modeling discrete open cracks in beams is presented. The effective length of the crack zone on both sides of a crack with stiffness reduction is formulated in terms of the crack depth. Both free and forced vibrations of cracked beams are studied in this paper and the results from the proposed modified crack model and other existing models are compared. The modified crack model gives very accurate predictions in the modal frequencies and time responses of the beams particularly with overlaps in the effective lengths with reduced stiffness. In the inverse analysis, the response sensitivity with respect to damage parameters (the location and depth of crack, etc.) is derived. And the dynamic response sensitivity is used to update the damage parameters. The identified results from both numerical simulations and experiment work illustrate the effectiveness of the proposed method.

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

An Experimental Study on the Similitude of Structural Behaviors for Small-Scale Modeling of Reinforced Concrete Structures (철근콘크리트 축소모델의 구조거동 상사성에 관한 실험연구)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.401-407
    • /
    • 1996
  • A 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail was designed. One 1/2.5-scale and one 1/10th model subassemblages were manufactured accoring to the required similitude law. Then the reversed load tests under the displacement control were performed statically to these subassemblages. The results of these tests were compared regarding to the similitude in the characteristics of structural behaviors such as strength., stiffness, energy dissipation, failure modes and local deformations. Based on these results, the following conclussions were drawn : (1) The strength of 1/10 model was very similar to that of 1/2.5 specimen. (2) The initial stiffness of 1/10 model appers to be approximately 2/3 of that of 1/2.5 specimen. (3) 1/10 model has therefore smaller energy dissipation capacity than 1/2.5 specimen. (4) Inelastic excursion mechanisms of 1/2.5 specimen and 1/10 model apper to be a little different.

  • PDF

Seismic Performance Evaluation of RC Bridge Piers by Macro Mathematical Model (Macro해석모델에 의한 RC교각의 내진 성능 평가)

  • Lee Dae Hyoung;Park Chang Kyu;Kim Hyun Jun;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.207-210
    • /
    • 2005
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predict of nonlinear hysteric behavior. For the purpose, analytical trilinear hysteretic model has been used to simulate the force displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve vary confinement steel ratio. In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens.

  • PDF

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

STUDY ON RIDE QUALITY OF A HEAVY-DUTY OFF-ROAD VEHICLE WITH A NONLINEAR HYDROPNEUMATIC SPRING

  • SUN T.;YU F.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.483-489
    • /
    • 2005
  • Based on a two-degree of freedom vehicle model, this paper investigates ride comfort for a heavy off-road vehicle mounted a nonlinear hydropneumatic spring, which is influenced by nonlinear stiffness and damping characteristics of the hydropneumatic spring. Especially, the damping force is derived by applying H. Blasius formula in modeling process according to the real physical structure of the hydropneumatic spring, and the established model of nonlinear stiffness characteristics have been validated by experiments. Furthermore, the effects of parameter variations of the hydropneumatic spring, such as initial charge pressure and damping coefficient, on body acceleration, suspension deflection and dynamic tire deflection are also investigated.

Transmission Error Analysis of Helical Gears in Consideration of Shaft and Bearing Deformation (축과 베어링 변형을 고려한 헬리컬 기어의 전달오차 해석)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2194-2200
    • /
    • 2002
  • Transmission error is highly related to gear noise. In order to predict the helical gear noise, transmission error analysis is needed. Up to now, the studies for the transmission error were conducted by the modeling of helical gears only. However, since helical gears are supported by the shaft and bearing, transmission error has the effects of the elements. In this study, the procedure to consider the shaft deformation with bearing stiffness for the transmission error analysis is proposed. To do so, the relationship between gear error and shaft deformation is analytically derived. Shaft deformation with bearing stiffness is analyzed by FEM. It is measured in the experimental test rig by the non-contact displacement sensors. Using the tooth error from tooth modification and the shaft deformation, the effects of shaft on the loaded transmission error are investigated.