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The Sensitivity Analysis for Structure Modification using Partial Differentiation
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ABSTRACT

This study predicts the modified structure of eigenvectors and eigenvalues due to the changes in the mass and the stiffness
of the structure. The sensitivity method of natural frequency using partial differential are derived with respect to the physical
parameter to calculate the structure modification. The method are applied to the 3 degrees of freedom 2 lumped mass model by
modeling the mass and stiffness, and then applies the method to a real crankshaft system. The position, direction of parameter
change and modified value were predicted for modification. Finally the predicted value is used to investigate the magnitude of
vibration and we found that the effect of modification results to reduce the level of magnitude vibration is satisfactory.

1. Introduction

Recently, improvement in design structure is
performed through experiment and using the
accumulative experienced of engineers. Therefore, it is
wasteful in consuming time, expenses and resources.
Especially, when considering the trend towards reduced
weight in manufactured products, it is important to
understand well the dynamic characteristics of the
product precisely before production commences. One of
the steps is the sensitivity analysis which requires a
numerical skill for the optimum design. Also, the
sensitivity analysis may predicts in advance the influence
of some effects of the total structure system due to the
modification of the design. For instance, Nelson‘"
presented direct method of sensitivity analysis and is
found splendidly practical in use by many researchers.
Mills-Curran® had performed the possibility of iterative
eigenvalue application but in practical use, this method
had a problem. Rudisill® determined the changes rates
for the first eigenvalue with eigenvector and the changes
rates for the second eigenvalue. Fox and Kapoor®
illustrated linear combination for non-modified structure
amount changes of an eigenvector and determining the
sensitivity coefficient from the normalized mass and
orthogonal condition and calculated the changes rates for
the first eigenvector. Wang® applied mode summation
technique of accelerated mode to the sensitivity analysis
and improved the estimation accuracy. Min, Hyun-Gi et.
al.® used direct differential method and studied the
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kinematics automobile suspension system with the
sensitivity analysis.

The sensitivity analysis explained above are widely
used by most of the researchers; however none of them
considered the sensitivity analysis to determine the
position, and the modified value but in analysis it was
found as a key problem. Once the modification changes,
the structure correspondently change the natural
frequency and the results is not the.optimum value. For
instance, if we intend to change the original structure but
with a less modified points and the value which the
changes of the dynamic parameters can achieve the
desired value, what should we do?

To overcome such problems, this study propose a
sensitivity analysis method to determine the most
sensitivity point, direction of parameter change and
modified value for modification. In this study, the
sensitivity method of natural frequency using partial
differential are derived with respect to physical
parameter to calculate the structure modification. The
method is applied to the 3 degrees of freedom & lumped
mass model by modeling the mass and stiffness and
applies the method to a real crankshaft system. The
position, direction of parameter change and modified
value is predicted for modification crankshaft system and
the result is used to investigate the level of vibration
magnitude.

2. Theory

2.1 Dynamic Characteristics of structure changes
The equation of motion in a general vibration system
with harmonic excitation is expressed as follows

[m]x}+ [CTx}+ [K Jx} = {F ()} Q)
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where,
[M] is a mass matrix,

[c] is a damping matrix,
[K] is a stiffness matrix,
{F(7)} is a force vector,

{x},{x},{} is displacement, velocity and acceleration.

When the structure changes, the mass, damping and
stiffness change correspondently. The equation of
changing structure can be written as

[M+ams}+[c+acki)+ [k + Ak fx)={F()} @

here, AM is the mass increment value, AC is the
damping increment value and AK is the stiffness
increment value.

Taking the Laplace transforms for equation (2) we find

(s2[M+aM]+s[c+ acl+ [k + Ak fx (s)) = {(F(s)} (3)
Considering, the linear transformation

{X(s)} ={¥(s)}[¢] and premultiplication both side by
[#] . then

(s + A |+ slem + acm |+ [k + kY (s)) 4)

=[oI' {F s}

where,
[aa17)= [T [am]o]
[ac]- [T [acly]
lax™]= [gF [ax o]

A linear relationship exists in the equation (4) and

)=l fz6) (5)
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From equation (3) and (5) we get

([} slem e[k Kzt =l T T (76

or 6)

(27 e slem ] [k Na @)= [T (7))

Here, [}\7"’], l@"’ J and [1?”’] are diagonal matrices.
Equation (6) is a new modal model. The new mode
shape matrix of a new structure as

Fl[lTr ] <] ™

Modal parameters [M’”], [C'"J, [K”’J and [g] can
be obtain from the modal analysis of the original
structure, then build a new modal model after
modification. A linear transformation by new structure
modal matrix

x()=[plz() 8)

Substituting (6) into (8), yields

_X,0)
Hpq(s)— Fp(s) (9)
& Blil),
) +sCm )+ k7))
where,

Hm(s) : frequency response between point p and q.

2.2 Sensitivity of natural frequency
The relationship between natural frequency and
modal mass M™, modal stiffness K™ is

[wr%][Mm]: [Km] (10)
where wf , M™ and K" are diagonal, and
[am]= {6 [m]ig}
"] Y I Yo}
The sensitivity of natural frequency w2 with

respect to structure parameters P is the partial

m
differential of @? with respectto P, .

(1n

2.3 Sensitivity of natural frequency with respect
to mass
From equation (10) we know

M=l[wn]"[K"’]—d:—LM i (12)
M, 2 a,

From equation (11)
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%=[¢]’%[¢]=[¢i] (13)

Where [g2] is diagonal matrix composed of mode
¢m

of the point i .

The inverse matrix differentiations are

m 1 m
LM ARV il

am, a1,
or (14)
aﬁn — 1 2
M;’ - 4 wn¢ni

The sensitivity of ; natural frequency with respect
to mass of i point is related with the

 mode only. Therefore, the mode accuracy

o, and

of modified point is important.

2.4  Sensitivity of natural frequency with respect
to stiffness
From equation (10) and equation (11)

ol oy ANy

"J

=5[m"r[¢r%<’§j[¢1{Mmr )

For i=j matrix

oK _
oK, N (16)
Substitute (16) to (15)
1
17
BK 2w [¢"'] {17

2.5 Frequency response sensitivity
We know that

[H{jo)=[z(jo)}" (18)
[2(jo)]= (o) [M]+ jelc]+[K]

here, [H(jw)] is the frequency response matrix and
[z(jw)] is the impedance matrix. Therefore the
frequency response sensitivity with in terms of partial
differential equation or with respect to physical

parameters is 10 “’)]
&

m

From equation (18), we obtained as follows

dH(jo)] - n] E{Z][H] (19)
@, @,
3. Application

Fig. 1 is a simple model of 3 DOFs lumped mass
used for the application of the above theory.

Mi=1.1 kg
M2=1.1 kg
M3=1.2 kg
K1=22300 N/m
K2=21300 N/m
K3=21300 N/m

Fig. 1 Simple 3DOFs modeling

Five cases were investigated. Case 1, the mass at
point 1 was added with 0.398kg, case 2 the mass at point
2 was added with 0.398kg, case 3 the stiffness was added
at point 3 with 1.1N/m, case 4 the mass are added at
point 3 with 0.398 kg and 0.191 kg respectively and for
case 5 the stiffness was added at point 2 with 1.79 N/m.
The sensitivity of natural frequencies was determined at
each cases.

Fig. 2 shows the model of a crankshaft system to be
used in the proposed method. The process of determining
the natural frequencies sensitivity is performed as in
previous procedures.
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Fig. 2 Crankshaft modeling

Case 1, an additive mass was added to point 35 with
0.5kg. Case 2, a 1 kg mass was added to point 1. Case 3
a 1 kg mass was added to point 71. Case 4 and 5 a 1.5 kg
mass and 2x1010N/m was added to point 71 respectively.
The increments of masses and stiffness were added
vertically in y-axis. The selected point in each case at the
position manner is to gain the instructive effects of
flywheel, middle®2journal bearing and pulley at point 1,
35 and 71 respectively. Also, a mass sensitivity curve is
calculated to identify the quantity value and the position
of the mass modification. Finally the results are satisfied
through the magnitude of the frequency response.
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4. Results and discussions

4.1  Sensitivity of natural frequency

Table 1 shows the results obtained from the simulation
analysis. The table shows that the effects of the
parameter changes on different mode are not the same.
For example if the mass is increase, the natural
frequencies value of the all modes decreases but if the
stiffness is increase there is no changes to the natural
frequency. All cases show that the natural frequencies are
not identical each other when the structure has been
modified. Note also the system is much more sensitive to
a change in the mass.

Table 1 Comparisons of natural frequency for simple

3DOFs modal model
Cases Mode | Original | Modified | sensitivity
1 9.731 9.567 ~0.008
Case 1
2 25.030 25.030 20.855
M1+0.398 k
( 2 39.841 38.070 20449
Case 2 1 9731 9.196 20202
2 25.030 26754 10263
44
(M2+0.398 kg) 3 39.841 37.060 20.188
e 3 1 9731 9.3164 0.0038
2 25.030 26.789 0.0007
(R3+1.1 N/m) 3 39841 | 39603 0.0001
Cone 4 T 9731 8316 20331
2 25.030 26.789 0472
(M3+0.191 kg) [—3 39.841 39.603 20.164
Case 5 1 9.731 9317 0.0006
2 25.030 26.790 0.0014
+
(K2+1.79N/m) |— 30.841 39.613 0.0007

Table 2 shows the sensitivity for the first five of
natural frequencies obtained results for crankshaft
system. The experiment data set were obtained from the
modal testing by dividing 32 points on the crankshaft and
exciting the crankshaft with an impact hammer at impact
points and measuring the responses at measuring points,
by means of the FFT analyzer.

As being obtained in the above simple 3DOFs modal
model it was confirmed that the increasing of mass,
shows that the natural frequencies mode increases and all
cases show the natural frequencies are not identical each
other once the structure is modified, and the sensitivity
for the both cases.

Also, it was found that the errors original and the
modified natural frequencies respect to the experimental
results were increased as the mass increases. To contrast
the effect of the additive mass, each cases of errors
results were shown in the type of bar chart as in the Fig.
3. Errors are obviously increased for the first three
modes and these modes are identified as prevailing
bending in-plane and out-plane modes in the modal
analysis.

Table 2 Comparison Comparisons of natural frequency
for crankshaft system

Cases Mode Ori. Mod. Exp. Sensitivity
1 312.8 314.7 335 -2.84¢-6
2 364.3 3179 460 -0.001
Case 1
(M35 +0.5 kg) 3 7255 700.1 750 -1.127¢-6
4 8244 7845 805 -5.676¢-6
5 1007.1 988.4 1080 -3.576¢-4
1 312.8 301.3 335 -0.002
2 3643 314.7 460 -2.855¢-9
Case 2
(M1 + 1 kg) 3 7255 672.5 750 -0.003
4 824.4 774.4 805 -8.246c-4
5 1007.1 977.4 1080 -0.001
1 312.8 280.6 335 -0.004
Case 3 2 364.3 3147 460 -0.005
ase
(M71+ 1 kg) 3 7255 620.3 750 -0.007
4 8244 769.9 805 -5.653¢-4
5 1007.1 968.1 1080 -0.001
1 312.8 268.7 335 -0.003
Case 4 2 3643 3147 460 -2.018¢-7
(M71 + 1.5 kg) 3 7255 603.5 750 -0.004
4 8244 768.7 805 -2.899¢-4
5 1007.1 964.7 1080 -8.304¢-4
1 312.8 312.9 335 1.061¢-7
Case 5 2 364.3 364.2 460 1.600e-37
(K71+2x10"N/m) 3 7255 | 7189 750 6.828¢-8
4 824.4 8245 805 7.9251e-9
5 1007.1 | 1007.1 1080 8.882¢-36

4.2 Mass curve sensitivity

Fig. 4 shows the mass at point 35 and mass at point
71 sensitivity curves. In the figure, the x-axis is
represented as an increment of the mass while y-axis is
presented as a peak value of the frequency response.
Here we found that, there are two intersection points of
curve sensitivity.

35

Ny original

m35 + 0.5kg
m1+1kg
m71+1kg
m71+ 1.5kg

30+

(| 1BE

mode
Fig. 3 Error due to modification

The first intersection point is located in between 550
gram to 600 gram and the second one is located in
between 950 gram to 1000 gram. Since, the additive
mass could not be simply added at any location, so the
minimum possible mass is the better. Therefore the first
intersection point (567 gram) is the best value to be
selected and point 71 is to be preferred. The point 71 is
preferred since it was the most effected on the sensitivity
curve and the mass sensitivity curve is rapidly decreasing
in peak level as the mass increases in the intersection of
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point mass range.
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Fig. 4 M35 and M7 sensitivity curves

4.3 Investigation of the amplitude level

Once the quantity value has been identified, the value
is used to check the effects of the amplitude vibrations
before and after modification of crankshaft structure.
When we modify M35=M71=567 gram, the original and
the modified curve of frequency response are shown in
the Fig. 5 and Fig. 6. It was confirmed that the peak
values for both in-plane and out-plane of frequency
responses were reduced. This also means that the
selected point and the quantity value are suitable,
correctable and available to be determined in the
proposed method. At in-plane mode, not only the
amplitude level reduces but shifting the peaks to a low
frequency domain. The phenomena was not happened to
the out-plane mode because the response is measured
when the additive mass is added vertically in y-axis.
However, if the additive mass is added in z-axis instead
of y-axis and measure the response, definitely the same
phenomena will be obtained as in-plane mode. In
contrast, we found the proposed method was not only
given an interactive knowledge but also we had learned
the dynamic behaviors of the system itself.
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Fig. 5 Comparison of frequency response in in-plane
mode
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Fig. 6 Comparison of frequency response in out-plane
mode

5. Conclusions

Partial differential sensitivity analysis using a newly
proposed 3 degree of freedom lump® mass and
crankshaft model has been presented and the conclusions
can be drawn as follows;

1) The application of modal model is good for
structure modification and also a useful
technique which can be applied for the complex
structure.

2) The accuracy of the mode shape determine the
accuracy of whole process whereby the accuracy
of parameter is the key identification of direction
and quantity value.

3) The proposed technique is sufficient and
convenient to use in personal computer for
reduction of the vibration level.
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