• Title/Summary/Keyword: stiffened

Search Result 593, Processing Time 0.024 seconds

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF

The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling- (보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈))

  • Chang-Doo,Jang;Seung-Soo,Na
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

Probabilistic ultimate strength analysis of submarine pressure hulls

  • Cerik, Burak Can;Shin, Hyun-Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.101-115
    • /
    • 2013
  • This paper examines the application of structural reliability analysis to submarine pressure hulls to clarify the merits of probabilistic approach in respect thereof. Ultimate strength prediction methods which take the inelastic behavior of ring-stiffened cylindrical shells and hemi-spherical shells into account are reviewed. The modeling uncertainties in terms of bias and coefficient of variation for failure prediction methods in current design guidelines are defined by evaluating the compiled experimental data. A simple ultimate strength formulation for ring-stiffened cylinders taking into account the interaction between local and global failure modes and an ultimate strength formula for hemispherical shells which have better accuracy and reliability than current design codes are taken as basis for reliability analysis. The effects of randomness of geometrical and material properties on failure are assessed by a prelimnary study on reference models. By evaluation of sensitivity factors important variables are determined and comparesons are made with conclusions of previous reliability studies.

Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure

  • Cho, Sang-Rai;Muttaqie, Teguh;Do, Quang Thang;Kim, Sinho;Kim, Seung Min;Han, Doo-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.711-729
    • /
    • 2018
  • This paper reports on the experimental investigations on the failure modes of ring-stiffened cylinder models subjected to external hydrostatic pressure. Nine models were welded from general structural steel. The shells were initially formed by cold-rolling, and flat-bar ring frames were welded to the shell. The hydrostatic pressure tests were conducted by using water as the medium in pressure chambers. The details of the preparation and main test were briefly explained. The investigation identified the consequence of the structural failure modes, including: shell yielding, local shell buckling between ring stiffeners, overall buckling of the shell together with the stiffeners, and interactive buckling mode combining local and overall buckling. In addition, the ultimate strengths were predicted by using existing design codes. Non-linear numerical computations were also conducted by employing the actual imperfection coordinates. Finally, accuracy and reliability of the predictions of design formulae and numerical were substantiated with the test results.

Compressive Strength Evaluation of Longitudinally Stiffened Octangular-Section Modular Shell Towers (종방향으로 보강된 팔각단면 쉘기둥의 축방향 압축강도 평가)

  • Choi, Byung Ho;Kim, Jung Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.135-140
    • /
    • 2016
  • This paper examined the uniaxial compressive strength of longitudinally-stiffened octangular modular section towers. Through a series of comparative studies, the 3-dimensional finite element analysis results were considerably larger than the nominal strength values based on Eurocode. Therefore, the design strength equations are simply applicable to the design of the octangular-section tower module, but a more rational method will be needed to properly predict the capacity.

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

Stochastic Imperfection Sensitivity Analyses of Stiffened Cylindrical Shells with Geometric Random Imperfection (불확정적인 초기형상결함을 갖는 보강 원통형 쉘의 확률론적 초기결함 민감도해석)

  • D.K. Kim;Y.S. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.142-154
    • /
    • 1994
  • In this paper, stochastic imperfection sensitivity analyses of stiffened cylindrical shells under static load are presented. Multimode formulation is performed for the buckling load calculation based on the Donnell's theory and Galerkin approximation. Random imperfection field theory and response surface method are combined with deterministic bucking analysis scheme to perform stochastic imperfection sensitivity analyses of stiffened cylindrical shells considering random geometric imperfection. From the characteristics of probabilistic bucking load, the relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. Those results can be used to determine the range of required safety parameter and acceptable imperfection.

  • PDF

Fracture Estimation of Stiffened Plates under Impact Loading using Micromechanics Plasticity Model (미시역학 소성모델을 이용한 충격하중을 받는 보강판의 파단 예측)

  • Choung, Joon-Mo;Cho, Sang-Rai;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.611-621
    • /
    • 2009
  • This paper first reviews the physical meanings and the expressions of two representative strain rate models: CSM (Cowper-Symonds Model) and JCM (Johnson-Cook Model). Since it is known that the CSM and the JCM are suitable for low-intermediate and intermediate-high rate ranges, many studies regarding marine accidents such as ship collision/grounding and explosion in FPSO have employed the CSM. A formula to predict the material constant of the CSM is introduced from literature survey. Numerical simulations with two different material constitutive equations, classical metal plasticity model based on von Mises yield function and micromechanical porous plasticity model based on Gurson yield function, have been carried out for the stiffened plates under impact loading. Simulation results coincide with experimental results better when using the porous plasticity model.

Numerical investigation on the flexural links of eccentrically braced frames with web openings

  • Erfani, S.;Vakili, A.;Akrami, V.
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.171-188
    • /
    • 2021
  • Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software "Abaqus" and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.