Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field

대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석

  • Received : 2011.03.17
  • Accepted : 2011.05.17
  • Published : 2011.08.27

Abstract

In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

본 논문에서는 곡선 보강 복부판의 좌굴해석을 대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 유한요소해석을 통하여 수행하였다. 수평보강재 및 수직보강재를 갖는 경우의 수직면내 곡선 복부판의 좌굴거동을 조사하기 위해 면내 모멘트 하중을 받는 경우에 대해서 복부판의 폭(b)의 변화, 보강재와 복부판의 휨-강성비(${\gamma}=EI/bD$)의 변화에 대한 변수연구를 수행하였다. 보강재를 갖지 않는 경우의 수직면내 곡선 복부판의 정적거동에 대해서도 조사되었다. 또한 모멘트 하중을 받는 경우에서 수평 보강재 및 수직 보강재의 좌굴능력이 비교 되었다.

Keywords

References

  1. 박대용, 박종면, 유성근, 장석윤(2004) 복합적층판 해석을 위한 대체변형률 장을 갖는 8,9절점 Reissner-Mindlin 판 요소, 대한토목학회 논문집, 대한토목학회, 제24권, 제2호, pp.335-344.
  2. Aghdam, M.M., Mohammadi, M., and Erfanian, V. (2007) Bending analysis of thin annular sector plates using extended Kantorovich method, Thin-Walled Structure, Vol. 45, pp.983-990. https://doi.org/10.1016/j.tws.2007.07.012
  3. Altman, W. and Neto, E.L. (1989) Stability of annular sectors and plates subjected to follower loads based on a mixed finite element formulation, Computer Structures, Vol. 31, pp.833-840. https://doi.org/10.1016/0045-7949(89)90269-1
  4. Davidson, J.S., BalanceS, R., and Yoo, C.H. (2000) Behavior of curved I-girder webs subjected to combined bending and shear, Journal of Bridge Engineering, ASCE, Vol. 5, No. 2, pp.165-170. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(165)
  5. Donea, J. and Lamain, G. (1987) A modified representation of transverse shear in C0 quadrilateral plate elements, Computer Methods in Applied Mechanics. Engineering, Vol. 63, pp.183-207. https://doi.org/10.1016/0045-7825(87)90171-X
  6. Harik, I.E. (1985) Stability of annular sector plates with clamped radial edges, Journal of Applied Mechanics, Vol. 52, pp.971-972. https://doi.org/10.1115/1.3169177
  7. Hughes, T.J.R., Taylor, R.L., and Worsak, K.N. (1977) A simple and efficient finite element for plate bending, International Journal of .Numerical Method, Vol. 11, pp.1529-1543. https://doi.org/10.1002/nme.1620111005
  8. Jomehzadeh, E., Saidi, A.R., and Atashipour, S.R. (2009) An analytical approach for stress analysis of functionally graded annular sector plates, Materials Design, Vol. 30, pp.3679-3685. https://doi.org/10.1016/j.matdes.2009.02.011
  9. Jomehzadeh, E. and Saidi, A.R. (2009) Analytical solution for free vibration of transversely isotropic sector plates using a boundary layer function, Thin-Walled Structures, Vol. 47, pp.82-88. https://doi.org/10.1016/j.tws.2008.05.004
  10. Liew, K.M., Xiang, Y., and Kitipornchai, S. (1996) Analytical buckling solutions for Mindlin plates involving free edges, International Journal of Mechanics, Vol. 38, pp.1127-1138. https://doi.org/10.1016/0020-7403(95)00108-5
  11. Liew, J.Y.R., Thevendran, V., Shanmugam, N.E., and Tan, L.O. (1995) Behavior and design of horizontally curved steel beams, Journal of Constructional Steel Research, Vol. 32, pp.37-67. https://doi.org/10.1016/0143-974X(94)00011-6
  12. Liu, W.H. and Chen, W.C. (1989) Note on the stability of annular sector plates with elastically restrained edges, International Journal of Mechanics Science, Vol. 31, pp.611-622. https://doi.org/10.1016/0020-7403(89)90068-4
  13. Mohammadi, M.., Saidi, A.R., and Jomehzadeh, E. (2010) Levy solution for buckling analysis of functionally graded rectangular plates, Applied Composite Materials, Vol. 17, pp.81-93. https://doi.org/10.1007/s10443-009-9100-z
  14. Nie, G.J. and Zhong, Z. (2008) Vibration analysis of functionally graded annular sectorial plates with simply supported raidial edges, Composites Structures, Vol. 84, pp.167-176. https://doi.org/10.1016/j.compstruct.2007.07.003
  15. Rubin, C. (1978) Stability of polar orthotropic sector plates, Journal of Applied Mechanics, Vol. 45, pp.448-450. https://doi.org/10.1115/1.3424329
  16. Sahraee, S. (2009) Bending analysis of functionally graded sectorial plates using Levinson plate theory, Composite Structures, Vol. 88, pp.548-557. https://doi.org/10.1016/j.compstruct.2008.05.014
  17. Sharma, A. and Sharda, H.B. (2005) Stability and vibration of Mindlin sector plates: an analytical approach, AIAA, Vol. 43, pp.1109-1115. https://doi.org/10.2514/1.4683
  18. Sharma, A., Sharda, H.B., and Nath, Y. (2005) Stability and vibration of thick laminated composite sectior plates, Journal of Sound Vibration, Vol. 287, pp.1-23. https://doi.org/10.1016/j.jsv.2004.10.030
  19. Shanmugam, N.E., Mahendrakumar, M., and Thevendran, V. (2003) Ultimate load behaviour of horizontally curved plate girders, Journal of Constructional Steel Research, Vol. 59, pp.509-529. https://doi.org/10.1016/S0143-974X(02)00043-3
  20. Srinivasan, R.S. and Thiruvenkatacharit, V. (1984) Stability of annualr sector plates with variable thickness, AIAA, Vol. 22, pp.315-317. https://doi.org/10.2514/3.8392
  21. Timoshenko S.P. and Gere J.M. (1961) Theory of elastic stability, McGraw-Hill, New York.
  22. Wang, C.M. and Xiang, Y. (1999) Deducing buckling loads of sectorial Mindlin plates from Kirchhoff plates, Journal of Engineering Mechanics, Vol. 125, pp.596-598. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:5(596)
  23. Xanthakos and Petros, P. (1994) Theory and design of bridges, John Wiely & Sons, Inc., New York.
  24. Zhou, Y.H., Zheng, X., and Harik, E. (1995) A semi numerical method for buckling of sector plates, Computer Structures, Vol. 57, pp.847-854. https://doi.org/10.1016/0045-7949(95)00084-T