• Title/Summary/Keyword: stiff equation

Search Result 38, Processing Time 0.021 seconds

Equilibrium Property of Ion Exchange Resin for Silica Removal at Ultralow Concentration (초저이온농도에서 이온교환수지에 의한 실리카제거 평형특성)

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Noh, Byeong-Il
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.907-912
    • /
    • 2007
  • Ion exchange resin was used to remove silica ion at ultralow concentration. The effects of temperature, type of ion exchange resin and single/mixed-resin systems on removal efficiency were estimated. As temperature increased, the slope of concentration profile became stiff, and the equilibrium concentration was higher. In the single resin system, the removal of silica was continued up to 400 min, but the silica concentration was recovered to initial concentration after 400 min due to the effect of dissolved $CO_2$. In the mixed-resin system it took about 600 min to reach equilibrium. Because of faster cation exchange reaction than anion exchange reaction, the effect of $CO_2$ could be removed. Based on the experimental results carried out in the mixed-resin system, the selectivity coefficients of silica ion for each ion exchange resin were calculated at some specific temperatures. The temperature dependency of the selectivity coefficient was expressed by the equation of Kraus-Raridon type.

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Static and Repeat Loads Model Test on Soft Clay Layer due to the Geotextile Reinforcement (토목섬유로 보강된 연약지반의 정.동적 모형실험)

  • Kim, Young-Su;Kwon, Sung-Mok;Kim, Yeun-Wook;Kim, Hyoung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.232-239
    • /
    • 2005
  • Recently geosynthetics that can be constructed on soft ground have been used for reinforcement and separation in various ways. Through laboratory model tests and numerical analysis, in this study, estimated the suitability of cable elements and appropriate input factors considering loading effect in modeling of geosynthetics. First, in laboratory model tests, geosynthetics were constructed on the clay, and covered with the thickness, 7.5cm of sand mat. And then static and dynamic model tests were performed measuring loading, settlement, ground lateral displacement, and displacements of geosynthetics, but, for cyclic loading, bearing capacity increased linearly with stiff slop because cyclic loading with constant cyclic pressure compacted the ground. Numerical analysis were performed with FLAC 4.0 2D using Mohr-Coulomb and Modified Cam-Clay models, and they compared with the results of model tests. Cable elements of FLAC in modeling geosynthetics couldn't consider the characteristics of geosynthetics that increase shear strength between geosynthetics and clay according to the loading increase. Therefore, in this study, appropriate equation that can consider loading effects in Cable elements was proposed by Case Study.

  • PDF

Dynamic analysis of magnetic head slider at ultra low clearance (마그네틱 헤드 슬라이더의 극소 공기막에 대한 동특성 해석)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1487-1494
    • /
    • 1990
  • In this paper the dynamic characteristics of self acting air lubricated slider bearing of hard disk/head system are investigated. The dynamic equations of magnetic head mechanism considering both parallel and pitch motion and the time dependent modified Reynolds equation are analyzed and the dynamic pressure distribution of air film is numerically calculated in frequency domain by small perturbation method and finite difference scheme with variable grid. The dynamic response of the slider spacing is obtained accordingly as the moving recording surface vibrates in parallel mode.

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena;Zeman, Jan;Janda, Tomas;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.369-380
    • /
    • 2018
  • In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.

Wave Models and Experimental Studies of Beam-plate-beam Coupled Systems for a Mid-frequency Analysis (중주파수 대역 해석을 위한 Beam-plate-beam 연성 구조물의 웨이브 모형 연구와 시험적 규명)

  • Yoo, Ji-Woo;Thompson, D.J.;Ferguson, N.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.121-129
    • /
    • 2007
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. Muller's method is utilised for obtaining complex roots of a dispersion wave equation, which does not converge in the conventional wave method based on a simple iteration. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-antisymmetric technique. The important hypothesis that the coupled beam wavenumber is sufficiently smaller than the plate free wavenumber is experimentally verified. Finally, experimental results such as powers and energy ratios show the validity of the analytical wave models.

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

Hyperbolic Reaction-Diffusion Equation for a Reversible Brusselator: Solution by a Spectral Method

  • 이일희;김광연;조웅인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.

Critical Factors Influencing Revisit Intention of Large Restaurant Chains in Myanmar

  • LAMAI, Gam Hpung;THAVORN, Jakkrit;KLONGTHONG, Worasak;NGAMKROECKJOTI, Chittipa
    • Journal of Distribution Science
    • /
    • v.18 no.12
    • /
    • pp.31-43
    • /
    • 2020
  • Purpose: This study examined how many determinant factors (service dimensions, food quality, and price perception) affect revisit intention. This practical concept is service quality (SERVQUAL), customer satisfaction, and repeated/revisit behavioral intention based on the theory of reasoned action (TRA). Research design, data and methodology: This research applied a hybrid mixed-method comprising exploratory and explanatory sequential design by Creswell (2014). The 400 responses were collected in four townships in Myanmar. This study drilled down to exploratory factor analysis (EFA) followed by confirmatory factor analysis (CFA) prior to test the hypothesized factor structure of all the variables resulted in the form of the goodness of fit. For further data analysis, structural equation modeling (SEM) was applied to test the relationships among the variables of the proposed model. Results: The results showed that perceived service quality, food quality, and price perception have direct effects on customer satisfaction and indirect effect on revisit intention. The perceived service quality has the most significant influence while the food quality has the least influence on customer satisfaction. Conclusions: The results are useful for the restaurant managers to better understand the significant strategic choice factors to improve higher quality service amongst restaurants both domestic and international under the stiff competition.