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Stability characteristics of hyvperbolic reaction-diffusion equations with a reversible Brusselator model are in-
vestigated as an extension of the previous work. [ntensive stability analysis is performed for three important
paraimeters. Ny, § and £);. where .V,y is the reaction-diffusion number which is a measure of hyperbolicity. B is
a measure of reversibility of autocatalytic reaction and £, is a diffusion coefficient of intermediate .\ Especial-
Iv. the dependence on Ay of stability exhibils some intcresting features. such as hyperbolicity in the small Ay
region and parabolicity in the large Ay region. The hyperbolic reaction-diffusion cquations arc sohved nuner-
ically by a spectral method which is modified and adjusted to hyperbolic partial differential cquations. The nu-
merical method gives good accuracy and clTiciency ¢ven in a stilf region in the case of small V. and it can be
exiended 1o a (wo-dimensional system. Four (ypes of solution. spatially homogencous. spatially oscillatory.
spatio-tcmporally oscillatory and chaotic can be obtained. Entropy productions for reaction arc also calculated
to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy pro-
duction changes discontinuously and it shows that different structures of the system have different modes in the
dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy

production in each stnucture give no important information related for states of system itself.

Introduction

Reaction-Diffusion systems have been studied extensively
as a prototype of dissipative structure.! Chemical waves and
patterns formed by the nonlinear combination of reaction
and diffusion have the common features of pattern formation
in nature. The evolution equations for chemical waves and
patterns are a set of partial differential equations (PDEs)
composed of reaction and diffusion parts. In describing dif-
fusion phenomena. Ficks' law has conventionally been used.
and it leads to parabolic PDEs. But the parabolic PDEs are
inadequate for describing wave phenomena becanse the
wave suggested by the parabolic equations propagates in
infinite speed. The features of parabelic equations make
themselves undesirable to describe wave phenomena. The
inadequacy of parabolic equations was pointed out and the
replacement of hyperbolic ones was suggested by previous
researchers. In the previous studies™ it was shown that the
inadequacy of the parabolic tvpe can be overcomed by the
hsperbolic one. This work is on an extension of the previous
studies. The hyvperbolic equation has two main features
which make it worthwhile using in the description of a reac-
tion-diffusion system. One is that it gives a general and exact
description of diffusion phenomena. Of course. it is more
difficult to handle hyperbolic equations than parabolic ones.
and the former give a fair approximation in general situa-
tions. However. the difficulty to solve hyperbolic equations
can be compensated by their ability to give an exact descrip-

tion of diffusion phenomena and its thermodsynamic consis-
tency if diffusion fluxes are defined as nonlinear functions of
diffusion forces. Another feature is that the hyperbolic sys-
tem has distinct stability characteristics generalized from the
parabolic one. because one can find new solutions that can-
not exist in the parabolic systen. The hyperbolic equations
give more insight for natural pattern formations with the
Turing instability* than the parabolic equations.

In this work, stability characteristics and various features
of solutions which occurrs in the hyperbolic system will be
examined in detail. A reversible Brusselator will be used as a
reaction model, and linear stability analysis will be per-
formed to investigate how stability characteristics change as
hyperbolicity in the diffusion process increases. In some rep-
resentative regions humerical solutions will be shown.
Entropy production is another subject studied in the present
work. Dissipative structures such as chemical oscillations,
waves. and stationary geomietric patterns maintain their
structures at the cost of the dissipation of energy supplied
from the surroundings and the production of entropy. Since
the entropy production is a direct measure of the dissipative
process occurring in systemn, it inay give sonie information
about the modes of dissipative structures. There have been
studies made to see it the entropy may provide a clue for
evolutionary principle of structures appearing in a nonequi-
librium state.* ' These studies have been focused mainly on
chemically oscillating svstems and the common results are
that entropyv productions of dissipative structures have dif-
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ferent yvalues from those in stcady uniform states and show
discontinuous changes in transition from the steady staic to a
dissipative structurc. Entropy productions for the rcaction-
difTusion system will be calculated and compared with pre-
vious results of the homogencous sysiem cvolving in time. A
spectral method has been used to obtain numerical solutions
for hyperbolic PDEs. It was observed that the spectral
mcthod'! 1% could be casily adapted to hyperbolic PDEs. The
mcthod is accurate and cfficient compared with the conven-
tional finite diffcrence or finite element method for hyper-
bolic PDEs. Also. it can be extended 1o a higher dimensional
system more casily than the conventional methods.

Hyperbolic Reaction-Diffusion Equations
The hyperbolic reaction-dilTusion cquations arc as follows:

2= -V I+ Al (1a)

dJd= —(p/cBT/m,)Vc,—Z LJ, (1b)
g
11 is assumed that the Muid 1s incompressible with no convee-
tion flow and homogencous in lemperature. Transport ol all
specics in this svstem is duc to diffusion only. With these
assumplions all dissipative processes that occur in the sys-
tem arc thosc duc to the rcactions and the dilTusion. We
denole the mass fraction for specics 7 by ¢; and the dilTusion
(lux by J;. The As(c) is the reaction ralc (crm. m; is the mass
of specics 7. is the mass density. and 7; arc phcnomenologi-
cal coclTicients.
The reaction model is the reversible Brussclator. '

AoX (2a)
B+Xo Y+D (2b)
2X+Y «3X (2¢)
X «E (2d)

In this model it is assumed that the concentration of the reac-
tants and products (A. B. 17 and I2) arc kept constant. while
intermedialte. X and Y can be changed (recly. All processes
arc reversible, Since the (luxes of two intermediate. Jyv and
Ji. are independent variables. the dimension of (he system is
lour. As the dimensions arc larger than three. one can expect
mor¢ micresting results such as chaotic behaviors besides
well-organized dissipative structurcs.

Now the cvolution cquations [or our svstem arc given in
scaled forms! as follows:

e M A BX YD XV-BY X K Ga)
f f C.
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All of paramcters arc scaled as follows :
L
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where 4 and Ai(i=1-4) arc the lorward and reverse rate
coclTicients. and 7. is the lincar dimension ol the system. f;1s
the dilTusion coclficient of specics ¢ defined by B, =(k.T/m)/
L..i=Yand I

The focus will be on three paramcters. N 3. and Dy
which have considerable physical meaning and critically
aflects the stability of the system, The N is called the reac-
tion-difTusion number. a measure of hyperbolicity of the dif-
fusion process. The 3 is the measure of reversibility of the
autocatalytic process: if B=0. it then corresponds to only for-
ward reaction. and il B—oeo it corresponds 1o the reverse
rcaction in (2¢). The valuc of Dy will be sclected to give the
desired ratio of the difTusion cocfficients of X and Y.

Only a contribution of the rcaction part to the entropy pro-
duction will be considered because the magnitude of the
entropy production duc to difTusion is very small when com-
parcd with onc duc to the reaction. The rate of entropy pro-
duction per unit volume duc to the rcaction 18 given as
lollows

o, = kpy (A=A DIy -A) 7). &

i

This cquation can be writien as

0,= (A-cX) A/ /0 X) +{(BX-YD)In(BX § YD) )
+ (XCY-BXYIN(Y/BX) + (X—F) (X /F) ©)

and in scaled form as

o= kak(E)5,. (Ga)
Pdmnr: jGJ_dV (6]3)

Linear Stability Analysis?

Eqgs. (3a)-(3d) has a stcady statc with
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. A+E
Ve s (7a)
. V(B +BX))
T Tox (7b)
= 0. (7¢)
v, 0O (7d)

These values correspond to spatially homogeneous solutions
of Egs. (3a)-(3d). The stability of the stationary steady state

is determined by the behavior of small perturbation, x and y

defined by
x=X-X, (8a)
y=F-¥. (8b)
Assuming that the magnitude of x and ¥ is small, a set of lin-
earized equations for x and v can be obtained as follows :

OX_ U
Ep —ai Y+ )X +0y | {(9a)
oy Iy
V_ %, ox Oy . 9h
ar TN ® (9b)
au, ax
e -e_\.;—g—zxux . 9c)
Dul._ dy )
5o 6 3" lat, . (9d)
where
o BipL oA B2 B
Y DY + M
2
6= D+ % e, =N Dy g y= N Dy .
e

=Nl ].‘,=; ', M=A+E, y=1+u.

Using the boundary conditions x—)—0 at £—0 and |, solutions
for Eq. (9) can be expected as :
Then the following characteristic equation can be obtained:

W+Po+Oun*+Rw+S-0, (1n

where
P=y18+y+l, - 4, {12a)
O=(y=8Hy) (e H ) O+ LA e He P, (12b)
RO,V Hy 80yl + [0+, ) +e, (y—8+) e, (12¢)
S=YOLL AR [Oe LA (y L e i e, {12d)

‘The conditions for all the roots of the aforementioned equa-
tion to have nonpositive real parts are the following condi-
tions due to Lienard-Chipart'* :
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x¥= Y exp(w,T)p,sin(amé),

n

(10a)

¥= 3 expl(,Tig,sin(nmd).

n

(10b)

oo

u=3y explw,)r,cos(nmg).
n

(10¢)

= 2 exp{mw, T)s,, cos(nmg).
"

(10d)

P =0,

0 >0,

$>0. (13¢)

POR-R:-P3§ >0 . (13d)

When all four conditions above are not satisfied, the system
will be unstable,

The stability conditions in (13) give rise to a relation of B
to parameters such as Nu B. and Dy, These stability condi-
tions are established after B is plotted in terms of m with
given parameters, For small values of B, stationary steady
states are maintained, As some critical concentration B, of B
exceeded, the steady state becomes unstable and thus vari-
ous spatially oscillatory or chaotic patterns in solution [q.
(%) appear, depending on the conditions (13), There exist
four critical values of B, The first two values from condi-
tions (13a) and {13b) are larger than those from the third
(condition (13¢)) and fourth (condition (13d)) for all condi-
tions of interest. Thus, the third and fourth critical values,
which will be denoted as B.s and B.4, respectively, are the
main objects of discussion. Parameter dependence of stabil-
ity within the limit of Ny, B, Dy as shown from Figure 1 to 4
will be discussed. [n the figures, the broken and solid lines

(13a)
(13b)

N

rd

Figure 1. The stability analysis depending on N B 0.5.
£,=0.0016. (Solid linc: B.4: Broken linc: £.5)
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periodic

Nrd

Figure 2. The stabiliy analysis depending on N, P=0.5.
Dy 0.0023. Solid line: 8., Broken line: B.3)

will cortespond 1o Bz and B.. respectively. Generally
speaking, as B is incrcased (rom the region of stable solution
while other parameters are lixed, a chaotic solution appears
at the interseetion with B4 critical value while an oscillatory
solution appears on crossing Bz It should be noted that
when crossing B.; oceurs ahead ol B.4 an oscillatory solution
appcears [or a short time until B4 is reached. However cross-
ing B.4 oceurs ahead ol 8.3, a chaotic solution is maintained
lo cven il B.s is crossed.

Stability dependences on Ney, a measure of hypetbolicity.
are shown in Figure 1 and 2. In the figures, B.s docs not
depend on Ny but B.; has two distinet dependences.
Approximately as shown in Figure | and 2, B.y docs not
depend on N,y in the large value region, while in the small
value region up 1o some value of N, B.y increases linearly
on Ny increments. Thus B.s can be located on cither below
or above B.a. [n Figure 1. above B,y the chaotic solution is
shown regardless of the relative locations of B.a; however, in
the narrow region between B,z and B4, an oscillatory solu-
tion appears. In contrast, in Figure 2 where B.s is above By
in whole range of N, a little peculiar pattern is shown.
Above B.; where the linear dependence on N, is shown, the

B

Figure 3. The stability analysis depending on (. N..=6.0.
IK=0.0016. (Solid linc: B.,; Broken line: B.5)
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X

Figure 4. The stability analysis depending on Dy ¥,=6.0. 3=0.5.
{Solid linc: B, 2 Broken linc: B, ;)

chaotic solution appears as expected. But above B, in which
there is a nondependence of Ny, a time-periodic pattern
appears. Thus (two tegions with N,y dependence on B, will
be distinguished. We will call the region of the non-depen-
dence on Ny the parabolic region and the region of the linear
dependence on Ny the hyperbolic region. It may be inter-
preted that as N, increases 10 a cerlain value, the hyperbolic
differential equations cllectively become parabolic equations.

@

0.0 0.5 1.0

S

Figure 5. The comparison of (a) finite difierence method and (b)
spectral method at various scaled 1. 8 14.0. Ny 0.1, Dy 0.0016.
B os.
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Figure 6. The steady oscillatory pattern at the scaled time T=1000,
B 13.0. Xy 6.0. Dy 0.0016.

Dependence on B, a measure of reversibility of (2¢), is
rather simple for both Bz and B.; as shown in Figure 3. They
lincarly depend on B with 8.5 <t B., which means that above
B.; a chaotic solution appears and between B.; and B, an
oscillatory solution is expected. [t is worthwhile 1o note that
since the range of B where the steady state is stable increasces
as the reversibility of (2¢) inercasces. there will be no dissipa-
tive or chaotic structure in the autocatalytic process in the
limit of completely reversible reactions.

The stability dependence on Dy is depicted in Figure 4. As
D, increases, Bes is increased while By is decreased with
much lower slope. Thus, they intersect at a certain D, [n the
case of a smaller value of D, the stability crossing of the Bs
occurs ghead of B.,, whereas in the case ot a larger value of
D, the stability crossing of B.; occurs ahead of Bes. As noted
previously, a chaotic solution appears on crossing B.,. but an
oscillatory pattern shows up only when B.s <2 B, in the case
of smaller values of D,.

Numerical Results and Discussion

For numerical simulations, spectral methods!! 1% are modi-
tied and adapted to hyperbolic reaction-dittusion equations.
The Fourier collocation method is used to have satistactory
solutions for Lgs. (3a)-(3d). In computation both accuracy in
solutions and numerical efficiency are required even when
stift solutions oceurr in the case of small N To compare the
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Figure 7. The time evolution of entropy production in steady
oscillatory pattern.

specttal method in this work with the finite dilterence
method. calculations were performed in which only the dif-
fusion term is taken into consideration by excluding reaction
parts in Egs. (3a)-(3d). The numerical solutions arc obtained
for Ny — 0.1; a sharp wave-(ront because of a relatively large
diflusion velocity was expected. As shown in Figure 5, the
spectral method exhibited a far better solution in sharpness
and smoothness than the linite difTerence method (FDM) by
the MOLCIHI routine in IMSL. Especially in the process
which two wave-fronts meet and propagate in reverse direc-

28 T T 2.8
=803 @ 1=815 (d)
24 24
X 20 20
1.6 \\/ 1.6
12 > - 1.2
0.0 0.2 0.4 0.6 0.8 1.0 00 02 0.4 0.6 08 1.0
2.8 2.8 T T
T=80.9 (b) ©=82.0 (e)
24 24

1.6 1.6
12 1.2 -
0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
28 T T T 28
1=810 (c) =827 ®
2.4 24

X w0p——mmm"" T 9

el e v

L L L 2
0.0 02 04 0.6 08 1.0 00 02 04 06 08 10

3 3
Figure 8. The periodic oscillatory pattern at the scaled time ()
T 803.(a)T 80.9.(¢c) T 81.0. ()T LS. ()T 82.0. (a) T 82.7.
B 16.0. Ny 7.5. Dy 0.0025.
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Figure 9. The time cvolution of cntropy production in periodic
oscillatory pattern.
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4.0
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20 |

Figure 1. The chaotic pattern at the scaled time 7=500. 8=16.0.
N.=4.0. 13,=0.0016.

tions, the spectral method gives excellent results. Tt can be
concluded then that the spectral method expresses itself far
better even for very stiff solutions in space, Furthermore,
with numerical etficiency with the same mesh size, the spec-
tral method consumes less than half the time compared with
the I'DM and the incremental rate of computation time with
the expansion of mesh size is far lower with the spectral
method. This will lead to a crucial advantage in extending
the method to a case of a higher dimension in space.

Four types of solutions, spatially homogeneous, spatially
oscillatory (Fig. 6), spatiotemporally oscillatory (Fig. 8) and
chaotic (Fig. 10), have been obtained. Entropy productions
are also calculated to get some clues for the dissipative pro-
cess occurring in the system, specifically to investigate how
it changes in the course of a pattern formation. The spatially
homogeneous solutions can be obtained for parameter sets
of steady regions such as indicated in Figure 1-4. As shown
in Figure 6 the spatially oscillatory solution exhibits 4 stable
pattern for parameter sets of oscillatory regions as pointed in
Figure 1-4 after an adequate amount of time. The pattem can
be selected by setting suitable values for parameters. For

{i-Hie Lee ef af.
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Figure 11. The time evolution of entropy production in unstable
chaolic pattem.
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Figure 12. The change of entropy production at transition from
thermodynamic branch to dissipative structure.

example, a halt wave number of patterns can be controlled
by changing D,. Figure 7 shows the time evolution of
entropy production corresponding to this pattern. After some
Hluctuations the entropy production converges to a stable
value, The spatio-temporally oscillatory solutions appear in
a rather peculiar set of parameters shown in Figure 2 which
is expressed as time-periodic. 1t looks like a vertically oscil-
lating rope seen transversally. In this situation a pattern con-
trol is not possible, and only one pattern with a halt’ wave
number can exist. In Figure 9 the entropy production evolves
periodically in time, Lastly, as the value of B increases up to
the chaotic region, the chaotic pattern or chemical turbu-
lence occurs as depicted in Figure 10. The chaotic pattern
does not appear instantly from the initial condition near the
bifurcation point; it's very slow to appear, But in the range
sutticiently far from B.; it appears without delay. As shown
in Figure 11 the entropy production seems to evolve with a
periodical pattern in induction period, but after some time to
fluctuate disorderly.

The variation of entropy production with regard to B is
calculated to investigate how it changes when the state ot the
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svstem changes. Figure 12 shows that entropy production
changes discontinuously at the bifurcation point. 1t mcans
that two states hayve different modes of energy dissipation 10
maintain their structurcs. In the dissipatisc structure the sys-
tem has a lower centropy production valuc than a homoge-
ncous structure. But it cannot be definitely stated that
dissipative structurcs have a lower entropy production than
homogencous stcady states [or general cascs. [t appears that
the valuc of cntropy production itscll does not give any
information about the determination of states. The transition
is sccond order. but there is something uncertain to conclude
about the transition to a dissipative structure in a rcaction-
diffusion svstem is sccond-order because the variation of
entropy production is small in its scalc. But when calculated
in a two dimensional svsicm. it becomes cerlamn. On the
other hand. in the casc of a transition 1o a chaotic stalc the
svstem has a higher valuc of cntropy production than a
homogencous onc. and an abrupt change of cotropy produc-
tion is found at the transition point between two states. It
scems that the system consumes more encrgy (0 maintain the
homogencous state than the dissipative structure.

To describe real chemical wave phenomena and (o gel a
more exact defimtion of difTusion fluxcs. hyperbolic cqua-
tions arc required. As mentioned carlier. it has alrcady been
shown that the hyperbolic system has very dilTerent stability
characteristics from the parabolic system, When it is investi-
galcd how (he stability depends on hyperbolicity. there are
two regions having diflerent stability characteristics. namcly
hyperbolic and parabolic regions. In the hyperbolic region
the range i which dissipative structurcs occur is narrow and
chaotic statcs appear n a wide range. In the parabolic region
chaotic stalcs may or may not occur depending on the condi-
tions of (he svstem such as difTusion cocilicients. It is
remarkable that chaotic structurcs occur in a wide range ol
parameters and may be gencral pheno: b=
rium, It appears that 1t is a nccessary balance between force
and fMux for the dissipative structure o emerge. and when
the balance breaks down. wo cxtreme structurcs. such as a
homogeneous or chaotic pattern may appear. Since the
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cntropy production is a direct measure of the dissipative pro-
¢ess occurring in a svstem. it is calculated in various states.
and it scems to reflect the modc of dissipation in a svstem. [n
a transitional statc the entropy production shows a discontin-
uous change and it originatcs from two diflerent states which
have different modes of ¢nergy dissipation. But it docs not
give any dircction to the evolution of a system. and its only
worth secms to be as a measure ol the dissipation process
under consideration.
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