• 제목/요약/키워드: steady magnetic fields

검색결과 28건 처리시간 0.022초

자기장이 인가된 충돌제트의 유동 특성에 관한 수치적 연구 (A Numerical Study on the Impinging Jet Flow Characteristics in the Presence of Applied Magnetic Fields)

  • 이현구;윤현식;홍승도;하만영
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.537-544
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow in the confined jet flow in the presence of applied magnetic field. Numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow fields become the steady state if the Stuart number is greater than a critical value. Thus the pressure coefficients at the stagnation point also vary as a function of Stuart number.

자기장이 인가된 충돌제트의 열전달 특성에 관한 수치적 연구 (A Numerical Study on the Heat Transfer Characteristics of Impinging Jet Flow in the Presence of Applied Magnetic Fields)

  • 이현구;윤현식;홍승도;하만영
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.653-661
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow and heat transfer ir the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the Nusselt number at the stagnation point representing the heat transfer characteristics also vary as a function of Stuart number.

Prediction of a Strong Effect of a Wek Magnetic Field on Diffusion Assisted Reactions in Non Equilibrium Conditions

  • Kipriyanov, Alexey A. Jr.;Purtov, Peter A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.1009-1014
    • /
    • 2012
  • The influence of magnetic fields on chemical processes has long been the subject of interest to researchers. For this time numerous investigations show that commonly the effect of a magnetic field on chemical reactions is insignificant with impact less than 10 percent. However, there are some papers that point to the observation of external magnetic field effect on chemical and biochemical systems actually having a significant impact on the reactions. Thus, of great interest is an active search for rather simple but realistic models, that are based on physically explicit assumptions and able to account for a strong effect of low magnetic fields. The present work theoretically deals with two models explaining how an applied weak magnetic field might influence the steady state of a non-equilibrium chemical system. It is assumed that external magnetic field can have effect on the rates of radical reactions occurring in a system. This, in turn, leads to bifurcation of the nonequilibrium stationary state and, thus, to a drastic change in the properties of chemical systems (temperature and reagent concentration).

Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어 (Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon)

  • Chang Nyung Kim
    • 한국결정성장학회지
    • /
    • 제4권3호
    • /
    • pp.210-222
    • /
    • 1994
  • 축방향의 균일한 자장이 Czochralski 도가니에 가하여졌을 때의 유동장, 온도장 및 산소의 농도장이 수치적으로 연구되었다.Czochralski 유동장과 농도장에 작용하는 부력, thermocapillarity, 원심력, 자성력, 산소의 확산계수, 산소의 segregation coefficient, SiO형태의 evaporation, 도가니벽의 ablation 등이 고려되었다. 회전방향으로의 대칭성으로부터 자오면에서의 속도성분과 회전방향의 속도성분, 온도, 전류의 흐름 등이 먼저 정상상태에 도달하였다고 가정하고 초기에 일정한 산소의 농도가 주어진 상황에서 비정상 상태의 산소의 농도장이 해석되었다. Czochralski 유동장에서의 대류와 확산에 의한 산소의 전달현상이 파악되었으며 결정성장 표면으로 흡수되는 산소의 농도가 연구되었다.

  • PDF

Simulation Study of Solar Wind Interaction with Lunar Magnetic Fields

  • Choi, Cheong Rim;Dokgo, Kyunghwan;Woo, Chang Ho;Min, Kyoung Wook
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.35-42
    • /
    • 2020
  • Particle-in-cell simulations were performed to understand the interaction of the solar wind with localized magnetic fields on the sunlit surface of the Moon. The results indicated a mini-magnetosphere was formed which had a thin magnetopause with the thickness of the electron skin depth. It was also found that the solar wind penetrated into the cavity of the magnetosphere intermittently rather than in a steady manner. The solar wind that moved around the magnetosphere was observed to hit the surface of the Moon, implying that it may be the cause of the lunar swirl formation on the surface.

Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2) (Effect of applied magnetic fields on Czochralski single crystal growth (Part II))

  • Chang Nyung Kim
    • 한국결정성장학회지
    • /
    • 제4권1호
    • /
    • pp.46-56
    • /
    • 1994
  • 균일한 자장이 Czochralski도가니에 가하여졌을 때의 유동장, 온도장 및 boron의 농도장이 수치적으로 연구되었다.이러한 Czochralski 도가니에 가하여졌을 때의 유동장, 온도장 및 boron의 농도 장이 수치적으로 연구되어 . 이러한 Caochralski 유동장을 지배하는 인자로는 온도차이에 의한 부력, 자유표면에서의 반경방향으로의 온도 구배로 인한 thermocapillarity, 도가니와 결정의 회전으로 인한 원심력, 외부에서 걸어준 자장에 의한 자성력, boron의 확산계수 및 segregation coefficient 등이 있다. 여기에서 boron의 농도가 매우 낮으므로 농도차이에 의한 부력의 효가 무시되므로 boron의 농도장은 유동장 및 온도장에 영향을 미치지 못한다. 희전방향으로의 대칭성으로 부터 먼저 정상 상태에 대한 자오평면(mericional plane)에서의 속도성분과 회전방향의 속도 성분이 구하여졌으며 온도장도 해석되었다. 이러한 정상상태에서의 유동장 및 온도장으로부터 boron의 농도에 관한 비정상상태에서의 농도구배가 Marangoni convection을 야기하고 있다. 또 비정상 상태의 boron의 농도장의 전달현상은 주로 대류작용에 의존하고 있다.존하고 있다.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

바이오센서용 거대자기저항-스핀밸브 박막이 등방성 자기저항 특성을 갖게 하는 후열처리 조건 연구 (Post Annealing Treatment Introducing an Isotropy Magnetorsistive Property of Giant Magnetoresistance-Spin Valve Film for Bio-sensor)

  • 카지드마;박광준;이상석
    • 한국자기학회지
    • /
    • 제23권3호
    • /
    • pp.98-103
    • /
    • 2013
  • NiFe/Cu/NiFe/IrMn/NiFe/Cu/NiFe 이중 거대자기저항-스핀밸브(GMR-SV) 박막의 진공 후열처리 온도의존성을 조사하여 강자성층 자화용이축을 유도하였다. 자유층과 고정층의 자화용이축에 의존하는 이중 스핀밸브 박막의 자기저항곡선은 외부자기장 각도를 다르게 하면서 측정하였다. 열처리온도가 $105^{\circ}C$일 때, $0^{\circ}$$90^{\circ}$ 사이 임의 측정 각도에서 약 2.0 %/Oe인 자장감응도 특성을 얻었다. 이러한 결과는 면상 강자성층과 자유층을 면상에서 서로 직교한 자화방향 유도를 통하여 이중구조 GMR-SV 박막이 고감도 바이오센서로 사용할 가능성을 제시하였다.

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발 (Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV))

  • 장일훈;무함마드 하피즈 아리푸딘;송시몬
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.14-23
    • /
    • 2023
  • The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.